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Preface 

This volume contains invited and contributed papers presented at the 12th edition of 
the International Summer School on Neural Networks "Eduardo R. Caianiello,"  
co-organized by the RIKEN BSI (Japan) and the Department of Physics of the Uni-
versity of Salerno (Italy). 

The 12th edition of the school was directed by Maria Marinaro (University of 
Salerno), Silvia Scarpetta (University of Salerno) and Yoko Yamaguchi (RIKEN BSI 
Japan) and hosted in the Ettore Majoranca Center in Erice in Italy. 

The contributions collected in this book are aimed at providing primarily high-level 
tutorial coverage of the fields related to neural dynamics, reporting recent experimen-
tal and theoretical results investigating the role of collective dynamics in hippocampal 
and parahippocampal regions and in the mammalian olfactory system. 

This book is devoted to graduate students and researchers with different scientific 
background (including physics, mathematics, biology, neuroscience, etc.) who wish to 
learn about brain science beyond the boundary of their fields. Each lecture aimed to 
include basic guidance in each field. Topics of lectures include the hippocampus and 
entorhinal cortex dynamics and mammalian olfactory system dynamics, memory and 
phase coding, mechanisms for spatial navigation and for episodic memory function, 
oscillations in neural assemblies, cortical up and down states, and related topics where 
frontier efforts in recent decades have been successfully linked to a remarkable evolution 
of the field. 
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The Brain Computation Based on

Synchronization of Nonlinear Oscillations:
On Theta Rhythms in Rat Hippocampus and

Human Scalp EEG

Yoko Yamaguchi

Lab. for Dynamics of Emergent Intelligence,
RIKEN Brain Science Institute, Wako, Saitama, Japan

yokoy@brain.riken.jp

Abstract. Synchronization of oscillations is widely observed in neural
assemblies in the brain. To clarify the computational principle in these
systems with essential nonlinearity, theta rhythms in rat hippocampus
and in human scalp EEG were investigated. Recent discovery of grid cell
and its contribution to place computation in the hippocampus were com-
prehensively understood by using a computational model with nonlinear
oscillations. Human EEG theta (4–8 Hz) study also indicated the central
role of synchronization for on demand module linking. Synchronization
can crucially contribute to computation through unification among het-
erogeneous developing systems in real time. A basic principle toward
intelligent system design was discussed for further study on the brain
computation.

Keywords: Synchronization, theta rhythm, hippocampus, place cell,
grid cell, human EEG.

1 Introduction

The brain consists of a huge number of neurons (200,000,000,000 in human) and
their synaptic connections. For understanding the brain computation, it is crucial
to solve the question how they can work together in parallel. Presence of synchro-
nization of nonlinear oscillations in the brain was pointed out based on the profile
of EEG power spectrum [1]. Nonlinear oscillations are typical self-organization
phenomena universally observed in nonlinear non-equilibrium systems in physi-
cal and biological systems [2]. The nonlinear properties of oscillations can endow
flexible and robust phenomena of “work together” where oscillators with differ-
ent natural frequencies and different initial phases are pulled together into an
attractor giving a collective oscillation with a common frequency and constant
phase differences [3]. This phenomenon is called synchronization, entrainment or
phase-locking. This is totally different from linear oscillation phenomena such as
resonance. Synchronization of nonlinear oscillations is well known to cause ro-
bust organization, for example, in circadian rhythms, gait of animal locomotion.

M. Marinaro, S. Scarpetta, and Y. Yamaguchi (Eds.): Dynamic Brain, LNCS 5286, pp. 1–12, 2008.
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2 Y. Yamaguchi

On the other hand, in spite of the long history of EEG studies, the functional
role of brain oscillation has not been clearly understood.

Here we elucidate the functional role of theta oscillation in memory and cogni-
tive tasks based on recent development in rodent hippocampus and human EEG
in cognitive task conditions. The key question below is how local processors can
be coordinated in real-time computation in ever-changing environments.

2 Space Computation in Hipocampal-Entorhinal System

2.1 Theta Rhythms and Place Cells

Rodent hippocampus has been extensively studied based on the cognitive map
theory by O’Keefe and Nadel [4], where firing rates of hippocampal cells en-
code the animal’s location in an environment. These neurons are called place
cells. Another important observation in rodent hippocampus [5] is theta oscil-
lation (4–12 Hz) in local field potential (LFP), which appear during voluntary
movements. The relation between rate coding for the cognitive map and LFP
theta was an open question for a long time. O’Keefe and Recce [6] reported
“theta phase precession” in rat hippocampus, where firing of hippocampal neu-
ron within its place field depends on LFP theta phase. The relative phase of
firing gradually advances as the rat traverses. Skaggs et al. [7] reported that
phase precession is characterized also as a temporal sequence of collective place
cell firing. The firing sequence of a number of place cells with overlapping place
fields are compressed into each theta cycle representing the running sequence as
shown in Fig.1.

We proposed a model of theta phase precession by hypothesizing the source of
theta phase precession in the entrochinal cortex [8] [9]. In this hypothesis, theta
phase precession is generated even in the absence of the hippocapmal associative
memory; this ability is inevitable for memory formation of novel events. In the
entorhinal cortex, we assumed intrinsic oscillation near theta frequency.

cell C
cell B
cell A

LFP theta

place field A B C
position

time

Fig. 1. Illustration of theta phase precession in rat place cells. When the rat traverses
in a place field, spike timing of the place cell gradually advances relative to local field
potential (LFP) theta rhythm. In a running sequence through place filed A-B-C, the
spike sequence in order of A-B-C emerges in each theta cycle. The spike sequence re-
peatedly encoded in theta phase is considered to lead robust on-line memory formation
of the running experience through asymmetric synaptic plasticity in the hippocampus.
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The coupled system of EC cell and LFP theta can be described by simple
equations {

θ̇i = ωi + A sin(θ0 − θi),
θ̇0 = ω0,

where θi and θ0 are phases of EC cell and LFP, the relative phase θi −θ0 is found
to have an equilibrium point:

θi − θ0 = sin−1

(
ωi − ω0

A

)
.

respectively. ωiand ω0 are oscillation frequencies and A is coupling magnitude.
If the intrinsic frequency ωi is constant, θi − θ0 the relative phase of unit firing
to LFP theta is found constant. The relative phase is robust against any per-
turbation, while it does not advance. As a necessary condition for generation of
gradual phase advancement in theta phase precession, the natural frequency is
assumed to have slow increase during input period. That is, according to the
increase of natural frequency, the relative phase gradually advances. Each firing
is given by the relation of the instantaneous value of intrinsic frequency as a
quasi steady state of phase locking.
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input
(~sec)

θ0

I1
I2

Fig. 2. A computational model of theta phase precession [9]. Theta phase precession
is generated in EC cells with intrinsic oscillations. In the presence of cortical input Ii,
the i-th EC unit fires at a relative phase θi − θ0 that is determined by phase locking
between the intrinsic oscillation (ωi) and LFP theta ω0. Theta phase precession emerges
as gradual advancement of the relative firing phase in accordance with a slow increase
of ωi.
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2.2 Discovery of Theta Phase Precession in EC Grid Cells

Recently it was found that the entorhinal neurons, giving major inputs to the
hippocampus, fire at positions distributing in a form of a triangular-grid-like
patterns in the environment [10]. They are called “grid cells” and their spatial
firing preference is termed “grid fields”. Interestingly, temporal coding of space
information, “theta phase precession” initially found in hippocampal place cells
were also observed in grid cells in the superficial layer of the entorhinal cortex
[11], as shown in Fig. 3. A sequence of neural firing is locked to theta rhythm of
LFP during spatial exploration. The presence of theta phase precession in the en-
torhinal cortex is in accordance with our hypothesis of theta phase precession [8]
[9]. On the other hand, the grid cell discovery requires fundamental reconsidera-
tion of the hippocampal system either in its function or on its mechanism. Does
this study entirely change the previous understanding of hipopcampal networks
with place cells or not?

The properties of hippocampal cells and entorhinal cells are summarized in
Fig.4. The new discovery in EC raises a number of interesting questions. Can
the cognitive map be represented and stored in the hippocampus though these
highly organized neural entities? More strictly, following questions are to be
solved.

i) How is the grid field formed in the entorhinal cortex?
ii) How is phase precession generated in grid cells?
iii) Can projection of grid cells to hippocampal neurons generate place cells?
iv) Does the above bring any new principle of space computation in the brain?
v) What are computational roles of various entorhinal cells based on biophys-

ical studies of entorhinal cells and their computational role in grid cell
system?

Among on-going studies on these questions, I would like to describe our recent
results on i)-iv) below.

Grid cell firing

LFP theta

time

Fig. 3. (Left) A grid field of an entorhinal grid cell. (Right) Theta phase precession
observed in the grid filed along a running sequence.
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Place cell

Place cell Place cell

phase precession

phase precession

phase precession

phase precession

phase precession *

Grid cell

Grid cell

Head direction

Velocity 

DG

CA3

CA1

ECII

ECIII

ECdeep

Fig. 4. A summary of neural firing properties in the entorhinal-hippocampal system,
DG, CA3, CA1, the entorhinal cortex (EC deeper layer, ECII, ECIII). Theta phase
precession was first found in the hippocampus, and finally in the EC superficial layer
(II and III). ∗) In EC layer III, about 10 % grid cells exhibit theta phase precession.

2.3 A Model of Grid Cell Formation Based on Self-motion Cues

To obtain comprehensive understanding of space computation, we extended our
former model to include grid cells in accordance with known property of entorhi-
nal neurons including “head direction cells” which fires when the animal’s head
has some specific direction in the environment [12]. We demonstrate theta theta
phase precession in our former model [9] naturally emerge as a consequence of
the grid cell formation mechanism.

Firing rate of the ith grid cell at a location (x, y) in a given environment
increases in the condition given by the relation:

x = αi + nAi cosφi + mAi cos(φi + π/3),
y = βi + nAi sinφi + mAi sin(φi + π/3),

with

n, m = integer + r, (1)
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self motion cue

sensory cue

Displacement computation

 at hexagonal direction system

Grid cell 

formation

Phase precession at grid field 

with intrinsic oscillation and LFP theta

Fig. 5. Illustration of a column model for grid field computation. The bottom layer
consists of local path integration module with a hexagonal direction system. The middle
layer associates output of local path integration and sensory cue in a given environment.
The top layer consists of a set of grid cells whose grid fields have a common orientation, a
common spatial scale and complementary spatial phases. Phase precession is generated
at the grid cell at each grid field.

where φi, Ai and (αi, βi) denote one of angles characterizing the grid orienta-
tion, a distance of nearby vertices, and a spatial phase of the grid field in an
environment. The parameter r is less than 1 representing the size of a field with
high firing rate.

The computational goal to create a grid field is to find the region with n, m =
integer + r.

We hypothesize that the deeper layer of the entorhinal cortex works as local
path integration systems by using head direction and running velocity. The local
path integration results in a variable with slow gradual change forming a grid
field. This change can cause the gradual phase shift of theta phase precession
in accordance with the phenomenological model of theta phase precession by
Yamaguchi et al. [13].

As shown in Fig. 4, the entorhinal layer includes head direction cells in
the deeper layer and grid cells in the superficial layer. Cells with theta phase
precession can be considered as stellate cells. The set of modules along verti-
cal direction form a kind of functional column with a direction preference as
shown in Fig.5. These columns form a hypercolumnar structure with a set of
directions.

The local path integration module consists of six units. During animal’s lo-
comotion with a given head direction and velocity, each unit integrates running
distance in each direction with an angle dependent coefficient.

Computation of animal displacement in given directions in this module is
illustrated in Fig, 6. The maximum integration length of the distance in each
direction is assumed to be common in a module, corresponding to the distance
between nearby vertices of the subsequently formed grid field. This computation
gives (n, m).

Computational results of local path integration are projected to next mod-
ule in the superficial layer of the entorhinal cortex, which has multiple sensory
inputs in a given environment. The association of path integration and visual
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Fig. 6. (Left) Illustration of local path integration in a hexagonal direction system.
Animal locomotion in from the white circle to the black circle is computed by individual
vector unit among six vectors to give a position measure. (Right) A grid field computed
by the module.

cues results in the relative location of path integration measure (αi, βi)in the
module.

The input of the parameter (n, m)and (αi, βi), to a cell at next module, at
the top part of the module, can cause theta phase precession in the assump-
tion given by the former model [13] [8]. The natural increase in frequency is
expected to emerge by the input of path integration at each vertex of a grid
field.

Simple mathematical formulation of the above model is given below. The
locomotion of animal is represented by a displacement distance in a given time
interval ∆R and its direction φd. The latter coincide with the head direction in
a small time interval condition. An elementary vector at a column of in local
path integration system has a vector angle φiand its modulus length A0. The
output of the j-th hexagonal vector system Dj is given by

Dj =
6∏

j=1

Ij(φi) (2)

with

Ij(φi) =
{
1 if − r < Sj(φi) < r,
0 otherwise

and

Sj(φi) = ∆R cos(φi − φd) (S mod A).

where r represent the field radius.
Through association with visual cues, spatial phase of the grid is determined.

(Details are not shown here.)



8 Y. Yamaguchi

The term Eq. (2) from the middle layer to the top layer gives on-off regulation
and also a parameter with gradual increase in a grid field.

Dynamics of the membrane potential Vjkof the cell at the top layer can be
described by a biophysical equation as follows.

d

dt
Vjk = f(Vjk, t) + I({Sj}) + Itheta, (3)

where f is a function of time-dependent ionic currents. The second and last
terms respectively representinput from hexagonal direction vector system and a
sinusoidal current representing theta oscillation of inhibitory neurons. In a proper
dynamics of f , the second term in the right had side gives activation of the grid
cell oscillation and gradual increase in its natural frequency. According to our
former results by using a phenomenological model [8], the last term of theta
currents leads phase locking of grid cells with gradual phase shift. This realizes
a cell with grid field and theta phase precession. We also tested Eq. (3) by using
biophysical equation for several types of neurons. We obtained similar phase
precession with stellate cell model. One important property of stellate cell is the
presence of sub threshold oscillations, while synchronization of this oscillation
can be reduced to a simple behavior of the phase model. Thus, the mechanism
of phenomenological model [8] is found to endow comprehensive description of
phase locking of complex biophysical neuron models.

2.4 From Grid Cells to Place Cells

Our computational model of formation of grid field was proposed based on lo-
cal path integration. This assumption was found to give theta phase precession
within the grid field. This computational mechanism does not always need an
assumption of learning in repeated trials in an environment but enables instan-
taneous spatial representation.

Fig. 7. An example of superposition f firing rate of two grid cells with the same space
scale and the different direction. One field with good matching between two grid fileds
is surrounded by broad distribution of weak firing rate. When phase precession in grid
cells and coincidence detection in a hippocampal cellare considered, the single filed
with good mathig is selectively transmitted to the hippocampal neuron, while others
are excludedd.
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The last question in this section is computation of place cells based on grid
cells. Projection of EC II cells to a cell either in the DG or in the CA3 is
given by a set of grid cells. That is, hippocamal neuron received superposi-
tion of grid fields as shown in Fig.7. In superposition of firing rates, some part
happen to be found as a single place filed, while it is in general associated
with delocalized firing, disrupting place filed segregation. We have analyzed
this problem by considering theta phase precession at each grid cell [19]. If a
hippocampal neuron is a linear integrator of entorhinal spikes, the place field
does not appear. On the other hand, if a hippocamal neuron is assumed to
be coincidence detector, a set of in-phase spikes are selectively integrated to
give a localized activity in a place filed. The coincidence detection of phase
along theta phase precession namely leads inheritance of theta phase precession
from entorhinal cells to hippocampal cells inseparably with formation of place
field.

Our consideration above is summarized in Fig. 8. We find fascinating nature
of space representation in cognitive map system in a highly organized space-time
domain.

Place field formation

 with phase precession

theta phase dependent 

auto-association 

phase precession source 

 by synchronization

Grid cell formation

DG

CA3

CA1

ECII

ECIII

ECdeep

displacement measure 

at hexagonal vector 

system

Theta phase dependent 

hetero-association 

place 

filed

sequence

self motion cue

sensory cue

to cortices

coincidence detection

Place/cue 

auto-association

Fig. 8. Summary on neural computation of space and its memory formation in
entorhinal-hippocampal system



10 Y. Yamaguchi

3 EEG Synchronization as a Key for Elucidation of
Human Intelligence

A physiological study in olfactory system by Walter Freeman was one of frontier
of neural oscillation for cognitive functions in the brain. Current studies on brain
dynamics in various levels more and more reveal the dynamical brain coordinated
by synchronization of oscillation. On the other hand, we are still far from the
answer on computational mechanism for cognitive functions.

Our synchronization network model of visual pattern recognition was first
proposed in 1985 (Shimizu et al.) [14]. The model was devoted to enlighten the
necessity of information flow between visual image and concept memory to lead
dynamical binding among relevant features, which was followed by report of
Gamma synchronization in cat visual cortex by Singer and Gray in 1989 [15].
The extended model [16] [17] exhibits pattern recognition through figure-ground
separation, while recognition of complex scenes often fails to arrive a fixed point
It suggests any additional control system in the brain.

Ishihara et al reported human EEG theta in 1972 with a task of IQ test
[18]. Theta rhythm was typically increased in task-dependent manner at frontal
midline regions. It is called fm theta for short. The current source of fm thata
was estimated at the anterior cingulated cortex or distributed regions in frontal
medial wall. Importantly, this region is known to concern with central execu-
tive functions including attention, working memory, future monitor, performance
monitor etc. Because of the task property of central executive functions, it should
be important to have ability of dynamical linking according to task demands in
indefinite situations.

We hypothesized that fm theta is related with dynamical linking among var-
ious associative areas and monitor areas in frontal medial regions. To test this,
we developed EEG index associated entire brain activities by using simultaneous

PFC
Hippocampus

routine circuits

Spatial Context Map
Goal/monitor

Working memory

Gating by theta
synchronization 

Fig. 9. Brain networks for the control of action-perception based on theta synchro-
nization. Dynamical linking of working memory system as well as hippocampal memory
system enables regulation of sensor-motor system (or thinking as an inner motor be-
havior) in areal-time adoptive manner.
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EEG and fMRI measurements. In the task of mental calculation, we successfully
found that monitor areas in the frontal medial wall are dynamically and al-
ternately linked with other cortical modules such as working memory regions
associated with distant theta synchronization increase. This study suggests that
brain computation for intelligence in general uses the principle of synchronization
of the slow oscillation. A generalized view of the brain computation is illustrated
un Fig. 9.

4 Concluding Remarks

Here we elucidated a computational model of space computation in rodent
entorhinal-hippocampal system. It gives very strong evidence on the crucial role
of synchronization in the brain for parallel computation. Sato elucidates the
question in human hippocampus memory in this book.

Toward the computational theory of intelligence, human EEG evidence was
shortly reviewed. To our happiness, recent development in animal and human is
huge enough to construct a concrete view for the intelligent machine. It could
be available for robotics or intelligent system design in general.

The brain is not only synchronization - - -but the brain cannot be solved
without synchronization.
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Abstract. The hippocampus is known to maintain episodic memory in
humans, but its neural mechanism is an open question. The rat hip-
pocampus is well investigated and known to have a particular neural
synchronization between firing and local field potential (LFP) called
’theta phase precession’ that encodes spatio-temporal input sequences
to the hippocampus. According to anatomical similarity between the rat
and human hippocampus, similar dynamics are expected in the human
hippocampus, while it is still unknown if the phase precession dynamics
could contribute to memory formation of complex information in episodic
memory. In this paper, we evaluate the human hippocampal dynamics by
using a combined approach of a computational model and human brain
activity analyses. A series of computational and experimental analyses
provides integrative understanding of human hippocampal dynamics and
its function.

1 Introduction

The neural synchronization dynamics play a key role for bridging neuron-level
and behavior-level dynamics (Fig. 1). One good example is locomotion pattern
generation in the lamprey [1]. In the lamprey, motoneurons in the spinal cord are
synchronously activated and the synchronization is associated with locomotion
pattern. The synchronization dynamics are clearly necessary for avoiding muscle
damage and for generating economical locomotion patterns. Interestingly, neural
synchronization dynamics are also associated with information processing of en-
vironmental changes (e.g. water flow) that would be achieved by the spinal cord.
Another example is feature binding in the visual cortex [2], where two neurons
with close receptive fields are shown to be synchronously activated in relation to
coherence of visual stimuli. This indicates that the neural synchronization would
be associated with perceptual grouping and could solve the ’binding problem’
of multi-modal visual features, such as color, motion, shape, etc. Again neural
synchronization dynamics are a bridge between neuron-level and behavior-level
dynamics.

In this paper, wewill focus on the dynamics ofneural synchronization in the hip-
pocampus. We begin by introducing a basic mechanism of neural synchronization
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c© Springer-Verlag Berlin Heidelberg 2008
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and propose a computationalmodel of the human hippocampus.Wewill show how
the computational model integrates experimental data consisting of human mem-
ory recall, eyemovement, electroencephalography(EEG) andhippocampal BOLD
(Blood Oxygenation Level-Dependent) signal. The importance of the combined
approach of a computational model and human experiment will be discussed.

BahaviorMolecules Neurons Local 
curicuits

Systems/ 
pathways

Neural synchronization

Synapses

Fig. 1. Levels of organization in the brain. Neural synchronization dynamics play a
key role for integrative understanding of multi-level brain dynamics.

2 Dynamics of Neural Oscillation in the Hippocampus

2.1 The Hippocampus

The hippocampus is part of the limbic system and is associated with mem-
ory function. Rodents and primates have hippocampi with a similar anatomical
structure [3] that is characterized by a closed circuit; cortical inputs enter the
superficial layer of the entorhinal cortex and sequentially project to the dentate
gyrus, CA3, CA1, the subiculum and the deeper layer of the entorhinal cortex.
The CA3 includes massive recurrent connections that are expected to implement
an associative memory [4]. The cortico-hippocampal connectivity is well studied
and shows that the hippocampus is reciprocally connected to wide neocortical
regions through the parahippocampal region [5].

In humans, a patient with hippocampal damage, H.M. [6], clearly demon-
strates the importance of the hippocampus to episodic memory [7] (for example,
the menu of today’s breakfast etc.) Hippocampal damage leads to difficulty in
forming new memories, while old memories (two years before the damage) , pro-
cedural memory, language skills and IQ scores remain normal after the damage.

2.2 Theta Oscillation in the Hippocampus

Various behaviors are known to reflect specific frequency oscillations of local
field potential (LFP) and EEG. In humans, delta oscillations (1–4 Hz) appear
during sleep, theta oscillations (4–8 Hz) are associated with memory function,
alpha oscillations (8–12 Hz) strongly appear during eye closing, beta-band oscil-
lations (12–20 Hz) are associated with attentional processing, and gamma-band
oscillations (20–100 Hz) are known to relate to feature binding. In the rat hip-
pocampus, LFP theta power clearly increases during walking [8], and a similar
property is also reported in humans [9]. The hippocampal theta dynamics are
considered to be associated with information processing of spatial navigation.
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The hippocamapal theta oscillation is also known to relate to odor encoding:
The hippocampal LFP theta is synchronized with the physical movement of
odor sniffing. Importantly the LFP coherence at the sniffing frequency between
the olfactory bulb and the hippocampus is known to increase during successful
odor encoding [10]. This evidence suggests that hippocampal theta oscillation
plays a key role in memory function.

2.3 Modeling Neural Synchronization Dynamics

How can we understand the dynamics of neural oscillations? One of the simplest
models of neural oscillation is a linear oscillator described by the second order
differential equation (Fig. 3a). In the linear oscillator, an exact sine wave appears
and the amplitude of the oscillation depends on the initial state of the oscillator.
When a dumping factor is included (Fig. 3b), the amplitude of the oscillation
decreases. In terms of the robustness of the oscillation, these are not a likely
model of neural oscillation. When a negative damping factor is assumed around
x = 0 (Fig. 3c), a stable limit cycle appears independent of the initial state.
This description is known as a van der Pol oscillator that is a typical nonlinear
oscillator. The van der pol oscillator is also adapted for neural dynamics that
show a resting state, excitability and a periodic oscillation state. For example,
the Fitzhugh-Nagumo equation was proposed to describe oscillations of a spike
train [11], and the phase equation [12] was also proposed to describe the same
dynamics in the phase plane by using a small set of parameters.

The nonlinear oscillators could perform real-time synchronization and phase
locking. When two nonlinear oscillators with different oscillatory phases are cou-
pled, the oscillations could be immediately synchronized (Fig. 3d). On the other
hand, linear oscillators are difficult to synchronize (Fig. 3e). Even when these
nonlinear oscillators have slightly different native frequencies, the oscillators are
also synchronized with a constant phase difference. The dynamics of nonlinear
oscillators would be essential for the understanding of neural oscillations.

2.4 Memory Encoding by Theta Phase Precession

O’Keefe et al. [13] discovered an interesting relationship between place cell’s
firing and LFP theta in the rat hippocampus. In this phenomenon, firing of the
place cells are synchronized with LFP theta, and these firing phases with LFP
theta are gradually advanced as the rat passes through the place field. This
phenomenon is called ’theta phase precession.’ Results of multiunit recording
further showed that different cells have an independent phase, thus the place
fields’ sequence is represented in a firing sequence is repeated in every theta
cycle, as a temporally compressed representation [14]. The time scale of the
phase pattern is similar to the asymmetric time-window of the Hebb rule, thus
the pattern could contribute to the formation of the temporal sequence memory.

What neural dynamics generate the theta phase precession? There are many
proposals based on the interference of two oscillations [13] [15], activity
propagation by asymmetric connections [16] [17] [18], asymmetric rate code and
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Fig. 2. Descriptions of neural oscillators. (a) A linear oscillator. Amplitude of the
oscillation depends on the initial state. (b) An oscillator with a damping factor. (c)
Van der Pol oscillator. Stable oscillation appears independent to the initial condition.
(d) Coupling of two nonlinear oscillators. The oscillators are connected at t = 0. The
oscillators are immediately synchronized. (e) Coupling of two linear oscillators. The
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Fig. 3. Theta phase precession. The firing phases of a place cell advance as the rat
passes through its place field. Interestingly, sequential activation of place cells is tem-
porally compressed in sequential firing of cells in every theta oscillations. The time
scale of the firing pattern is similar to the Hebb rule with an asymmetric time window,
thus phase precession is expected to contribute to the synaptic plasticity.
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oscillatory inhibition [19] and somatic inhibition-dendric excitation interference
[20], while Yamaguchi [21] proposed that the theta phase precession is generated
by neural synchronization dynamics in the entorhinal cortex. In this model, a
gradual increase of native frequency of the entorhinal cell is assumed as an ac-
cumulation of cortical input. The synchronization between cell’s activation and
LFP theta results in a robust generation of phase precession. It is also important
that the generation of phase precession in the entorhinal cortex enables memory
storage of novel cortical inputs in the CA3 network with a Hebb rule with an
asymmetric time window [21]. Results of computer simulation showed that en-
torhinal phase precession is an efficient dynamic for storing temporal sequence
in various time scales experienced only one time [22] and for forming spatio-
temporal memory [23] and the cognitive map [24]. Recently entorhinal phase
precession is experimentally found in the grid cells [25] and its computational
role in spatial navigation is further discussed [15].

3 A Model of Theta Phase Precession in Human
Hippocampus

3.1 Object-Place Memory

To evaluate the dynamics of the human hippocampus, ’object-place memory,’
consisting of what and where memory contents, is often used as an experimental
model of the episodic memory. In the object-place memory task, the subject
is asked to remember certain objects and their locations in the environment,
and after a delay period, the subject is asked to recall the objects and these
locations. When the hippocampus is damaged, the subject has great difficulty
performing the task [26] [27]. This clear dependence of the object-place memory
on the hippocampus allows for evaluation of hippocampal memory dynamics.
The object-place memory procedure is also applied to monkeys [28] and rats [29]
and also known to be associated with the hippocampus.

Another advantage of the object-place memory paradigm is an anatomical
relevance: the hippocampus receives a convergent projection of what and where
information from dorsal and ventral visual pathways through the parahippocam-
pal region, respectively [30]. A human fMRI (functional Magnetic Resonance
Imaging) study also demonstrated object and scene selectivities in these path-
ways [31]. This anatomical evidence is in agreement with the functional demands
of the hippocampus forming object-place memories. Taken together, the object-
place memory paradigm allows for evaluation of memory processing in the human
hippocampus.

3.2 A Computational Model of Object-Place Memory

In the rat hippocampus, place cells are known to be selectively activated by
the rat’s location in the environment, while view cells in the primate hippocam-
pus are known to be selectively activated by eye fixation location in the
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environment [32]. These differences are considered to be derived from the dif-
ference of the visual input angle between primates and rodents [33]. Together
with the anatomical evidence of dorsal and ventral visual inputs, the object and
scene information would be modeled by inputs from the central and peripheral
visual fields that lead to small and large overlaps within those inputs [34]. This
assumption is also in line with a model proposed by Rolls [35] where object-place
memory is modeled with a continuous and discrete attractor.

In human object-place memory tasks, object-place memory is known to be
formed during a short encoding period, and this property is also important to
the model of the episodic memory. What neural mechanism can realize the in-
stantaneous formation of object-place memories? One neural mechanism is the
theta phase precession dynamic that can realize the on-line memory encoding
of a temporal sequence [21] [22]. Based on theta phase coding, the authors pro-
posed a computational model of object-place memory in the hippocampus [34].
In this model, the following scenario is hypothesized: First, multiple object-place
associations are encoded by a visual input sequence consisting of object infor-
mation with small overlaps and scene information with large overlaps. Second,
the sequence is translated to theta phase coding at the entorhinal cortex, and
finally stored into CA3 connections that form a cognitive map for object-scene
associations.

By using computer experiments, the above hypothesis was tested in one-
dimensional [34] and two-dimensional visual environments [36]. Fig. 4 shows
the result of two-dimensional object-place associations. The visual environment
included four objects (Fig. 4a) that are encoded by a randomly saccadic input
sequence. According to smaller overlaps within object information, object inputs
have shorter durations than scene inputs on average (Fig. 4b). In theta phase
coding (Fig. 4c), these short duration inputs (i.e., shorter than the time scale
of phase precession) are always translated to early phase firings, therefore a ro-
bust phase difference appears between object and scene units (Fig. 4d). After a
few seconds encoding period, object-scene and scene-scene asymmetric connec-
tions are formed according to the Hebb rule with an asymmetric time window
(Fig. 4e). Interestingly, asymmetric connections also appear between larger and
smaller spatial scales of scene information. In summary, object-place memories
are formed as a hierarchical structure of the network.

One functional advantage of the hierarchical network is selective activation of
the object-place memories. When the top of the network is activated, a set of
object-place associations appears simultaneously, and individual sets of object-
place association appears sequentially one by one (Fig. 5a). On the other hand,
an initial activation at the middle of the hierarchical structure results in the re-
call of a few object-place associations (Fig. 5b). Such a selective recall would be
necessitated by the hippocampus that maintains huge memory contents appear-
ing in the episodic memory. In a traditional associative network, the memory is
represented by a fixed-point attractor, therefore it is difficult to realize such a
selective recall.
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Fig. 4. Object-place memory encoding by theta phase precession. (a) Visual envi-
ronment. (b) Input sequence consisting of small-overlapped object information and
large-overlapped scene information. (c) Theta phase precession. (d) A schematic repre-
sentation of average phase relationship between object and scene inputs. (e) Graphical
representation of a resultant CA3 connection. Object-scene and scene-scene asymmet-
ric connections are formed by phase difference of these inputs and a Hebb rule with an
asymmetric time window.

The current object-place hierarchical network would have a link to the hu-
man cognitive map that is psychologically known to possess a hierarchical struc-
ture among landmarks: Smaller scale spatial relationships of landmarks (e.g.,
Denver v.s. Cincinnati) are influenced by larger scale spatial relationships of
landmarks (e.g., Colorado vs. Ohaio) [37]. Also in laboratory environments, the
similar memory structure is formed in an object-place memory paradigm [38].
Neural representation of those large-scale spatial memories is an open ques-
tion, while the current results suggest that spatial inclusion (’part-of’) relation-
ships are encoded by asymmetric connections realizing a selective recall in the
hippocampus.
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(a) (b)

Time of peak activation

Early Late

Fig. 5. Results of selective recall in a hierarchical network. (a) A recall of all four
object-place associations by an initial input to the top of the hierarchical network. (b)
A recall of two object-place associations evoked by an initial input of the middle of the
hierarchical network.

4 Combined Approach of Computational Model and
Human Brain Activity Analyses

The hierarchal network of object-place memory has an advantage in memory re-
call, while it remains unknown if the neural encoding of the theta phase coding
and the resultant hierarchical network of the object-place memory really exist in
the human brain. In the following section, we will show a series of experimental
evaluations (Fig. 6) of theoretical predictions by using human non-invasive ex-
perimental measurements, scalp EEG, eye movement, human recall performance
and simultaneous EEG-fMRI.

4.1 Scalp EEG

Scalp EEG that dominantly detects neocortical LFP, is difficult to associate with
hippocampal EEG theta activity, while it is still important to evaluate scalp EEG
during object-place memory encoding that would be implemented by cooperation
among the visual and oculo-motor systems and the hippocampus. According
to the theta phase coding theory, hippocampal EEG theta power is expected
to increase during object-place encoding in relation to subsequently successful
recall. We evaluated whether the scalp EEG theta power during object-place
encoding is correlated with subsequent memory recall [39].

In the experiment, we measured 58-ch scalp EEG signals, 4-ch electroocu-
lography (EOG) signals and eye movement from 12 participants while
performing an object-place memory task. The task consists of an 8-sec en-
coding of four object-place associations with familiar objects (Fig. 7a ), a 10-
sec random saccades task, and a 30-sec recall task on the display by using
a mouse. In the analysis, EEG power during encoding of each trial that was
later recalled either completely (’successful’) or imcompletely recalled (’failed’).
According to retino-corneal electric potential of the eye, eye movements pro-
duce serious artifacts in EEG signals. These ocular artifacts were corrected
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Fig. 6. Combined approach between computational model and human experimental
data analysis. Major components of the computational model, eye movement, EEG
theta and memory performance are systematically evaluated. Numbers of arrows indi-
cate section number that is associated with particular experimental data analysis.
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Fig. 7. An object-place memory task. (a) Visual stimulus and eye movement during
8-sec encoding period. (b) Horizontal and vertical eye movement. (c) EEG signal at
the midline frontal electrode (Fz). (d) Time-frequency energy with wavelet transfor-
mation.

by a correction method consisting of EEG-EOG regression and EOG
subtraction [40].

In the result, ocular artifacts are successfully removed from EEG signals
(Fig. 7b). A significant increase of EEG power was found at a theta range of
6.5-7.5 Hz, in a widely distributed area from the frontal to parietal regions,
while EOG signals did not show significant change in the theta band. The EEG
coherence analysis also showed the EEG theta coherence increase during en-
coding in relation to subsequent successful recall. The location-frequency re-
lationship in the theta band coherence corresponded well with the subsequent
memory effect found in EEG power. These results are in good agreement with the
prediction of the computational model. Beyond the prediction, the distributed
EEG theta is considered to consist of the following three components: Frontal
EEG theta of item encoding [41], parietal EEG theta of visuo-spatial control
[42] and central EEG theta associated with implicit memory encoding that is
likely to link with the hippocampal theta [43]. In section 4.4, we directly eval-
uate the relationship between the central EEG theta and hippocampal BOLD
signal.
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4.2 Simulated Memory Based on the Computational Model

The combined analysis between computational theory and human experimental
data analysis is known as an effective approach to evaluate the specific neural
dynamics associated with brain function (e.g., a reinforcement leaning in a gamb-
ing task [44]). Here we introduce a combined analysis to solve the main question,
whether the neural encoding of the theta phase coding and the resultant hierar-
chical network of object-place memory really exist in the human brain [45]. In
our analysis, human eye movement data during encoding of object-place associ-
ations were introduced to the computational model of the object-place memory
based on the theta phase coding. If the theta phase precession dynamics exist in
the human brain, the resultant network should correlate with human subsequent
memory recall, otherwise the model is rejected.

One-time introduction of an 8-sec human eye movement data was enough to
form an object-place hierarchical network in the computational model. The resul-
tant network was evaluated by a computational recall procedure and found that
an initial activation started a sequential activation representing multiple object-
place associations. Importantly, both the degree of the hierarchical structure and
the computational recall performance were significantly correlated with human
recall performance, while simple behavioral parameters (i.e., blink frequency and
fixation duration) were not significantly correlated with human recall. This in-
dicates that the model has the ability to extract memory dependent information
from eye movement data and can predict the subsequent recall performance of
the participants. The current result could not reject other possible neural mech-
anisms, while the results are still important for indicating the relevance and
functional advantage of theta phase precession dynamics in the human brain.

4.3 Eye Movement-EEG Coherence

In rats, the synchronization between sniffing behavior and hippocampal EEG
is expected to have an important role in odor encoding [46]. Analogous to this
evidence, the computational model of the object-place memory [34] suggests a
synchronization between eye saccades and EEG theta power during successful
encoding. In the following analysis, we evaluated this prediction by using a coher-
ence value between saccade rate and EEG power [47] where the coherence value
is defined to be independent of either average EEG power or average saccade
rate.

The coherence value between saccade rate and frontal EEG theta power (5.0–
6.5 Hz) was found to significantly increased in relation to subsequently successful
recall. This result is in good agreement with the prediction. Possible concerns of
ocular artifacts would be rejected by a saccade rate-EOG coherence value that
was not significantly correlated with subsequent recall. An additional coherence
analysis during eye fixation also demonstrated that the saccade rate-EEG theta
coherence was not due to the contamination of ocular artifacts in EEG signals.
These results suggest that frontal EEG theta regulates eye saccade generation
during object-place memory encoding.
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What is the functional role of the saccade rate–EEG theta coherence? Our
hypothesis is that the intermittent increase of EEG theta power produces a set
of segmented visual input sequence specially relating to object-place memory en-
coding. We evaluated the hypothesis by using an additional combined analysis;
EEG theta power-segmented input sequences were introduced to the compu-
tational network, and the resultant computational networks were evaluated in
relation to subsequent human recall. Results demonstrated that computational
recalls were again significantly correlated to human recall, and its correlation
was further increased in compared with the previous results without input seg-
mentation. This result suggests that the intermittent increase of hippocampal
EEG theta power contributes the memory encoding of visual input sequence.
This is also in line with the proposal by Ulanovsky and Moss [48] based on the
bat evidence where the intermittent hippocampal EEG theta was increased with
the echolocation calls.

4.4 Simultaneous EEG-fMRI

The above results showed the important relationship among saccades, scalp EEG
theta and memory performance, but it is still unclearwhether the scalp EEG theta
is really associated with hippocampal activity. To answer this question, we per-
formed a simultaneous EEG-fMRI recording during the object-place memory task
[49]. Simultaneous EEG-fMRImeasurement is a recent technique that can demon-
strate a direct relationship between scalp EEG power and BOLD signals [50]

BOLD images were acquired with a 3-T MRI scanner while performing the
task, and scalp EEG were simultaneously recorded. In EEG data analysis, arti-
facts of MR scanning, ballistocardiogram and eye movements were sequentially
corrected and translated to wavelet power. In fMRI data analysis, the difference
between successful and failed encoding in relation to subsequent recall was eval-
uated. The subsequent recall related BOLD signals were finally compared with
an expected BOLD signal calculated by EEG theta power.

In EEG results, we successfully detected the EEG theta power increase in
relation to subsequently successful recall. In fMRI results, right inferior frontal
regions and middle occipital region were positively correlated to subsequent re-
call, while the hippocampal BOLD response was negatively correlated to the
subsequent recall. Both positive and negative BOLD responses are considered
to be critical for successful encoding [51]. Then, we calculated a temporal corre-
lation between the hippocampal BOLD signal and the scalp EEG theta power.
It was found that the hippocampal BOLD signal was negatively correlated to
the EEG theta power with 8-sec delay. This result clearly indicates that the
scalp EEG theta during object-place encoding is associated with the hippocam-
pal activity, as hypothesized in the above combined analyses. In addition to this
result, the inferior frontal gyrus and the middle occipital gyrus were also found
to be negatively correlated to EEG theta power. This result further indicates
that theta dynamics in the cortico-hippocampal system facilitates object-place
memory encoding.
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5 Summary

Computational experiments showed that hippocampal theta phase coding has
the ability to store episodic memory consisting of complex memory contents, such
as object-place memory (Section 3). By using a computational model-human
experimental data combined analysis, the model was systematically evaluated
in terms of human brain activity. Table 1 shows a summary of the results of
the combined analyses. All results on the scalp EEG theta, the model-based
simulated memory, the saccade rate-EEG theta coherence and the EEG theta-
hippocampal BOLD relationship were in good agreement with the prediction
of the computational model. These results strongly support that theta phase
coding in the hippocampus would play an important role in the human memory
formation, as observed in the rat hippocampus.

Table 1. Summary of the combined analyses

Successful

Failed

Scalp EEG θ

High 

Computational 
memory

Hierahcical

Random

Saccade-EEG θ 
coherence

Coherent

Independent

Hippocampal 
BOLD

Low

HighLow 

Subsequent 
recall

For the integrative understanding of the neural dynamics and the cognitive
function, it is essential for including both the proposal of the computational
model and its evaluation by using the combined analysis, while it is also impor-
tant to pay attention for ’epiphenomena’. Here we showed a combined approach
of the object-place memory, but there is still the possibility of ’true’ neural dy-
namics that would have better computational ability and produce a consistent
understanding of experimental data. To minimize this problem, the functional
advantage of the computational model should validate the model. We would
further improve the functional advantage of our model by combining it with
experimental evidences.

In the current study, we focused on the dynamics of memory encoding, while
recall dynamics that would be characterized by the hierarchical network (Section
3.2) still remains unevaluated. According to scalp EEG evidence [52], the dynam-
ics of theta synchronization is again expected to play an important role during
episodic recall. We believe that the combined analysis will play an important
role in understanding the recall dynamics implemented by cortico-hippocampal
cooperation through theta synchronization.
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Abstract. Interactions of hippocampal and parahippocampal regions are impor-
tant for memory-guided behavior. Understanding the role of these structures re-
quires understanding the interaction of populations of neurons, including the 
cellular properties of neurons in structures such as the entorhinal cortex.  Recent 
data and modeling suggest an important role for cellular mechanisms of persis-
tent spiking and membrane potential oscillations in medial entorhinal cortex, 
both in mechanisms for spatial navigation and for episodic memory function.  
Both persistent firing and membrane potential oscillations may provide mecha-
nisms for path integration at a cellular level based on speed-modulated head di-
rection as a velocity signal.  This path integration process thereby provides a 
potential mechanism for grid cell firing properties in medial entorhinal cortex.  
Incorporation of these processes into a larger scale model allows simulation of 
mechanisms for sequence encoding and episodic memory. 

Keywords: episodic memory, persistent spiking, membrane potential oscilla-
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1   Introduction 

Considerable research has focused on interactions of components of the hippocampal 
formation in memory-guided behavior at the level of interacting brain regions. This 
includes data showing impairments of memory-guided behavior with lesions of the 
hippocampus  [1-8] as well as parahippocampal regions such as the entorhinal [9-12] 
and perirhinal cortex [13].  Understanding the role of these structures requires under-
standing the interaction of populations of neurons in these structures, including the 
cellular properties of neurons in structures such as the entorhinal cortex.  This chapter 
will review some recent data and modeling suggesting an important role for cellular 
mechanisms of persistent spiking and membrane potential oscillations in medial en-
torhinal cortex, both in mechanisms for spatial navigation and for episodic memory 
function. 
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Electrophysiological recording in awake, behaving rats provides a link between 
cellular properties of individual cortical regions and the behavioral role of these neu-
rons in behavior. In particular, the recent discovery of grid cells in the medial  
entorhinal cortex provides an exciting set of data relevant to the function of these 
circuits.  Grid cells are single neurons that respond in multiple locations in the envi-
ronment in a hexagonal array [14-17].  They can be characterized by their spatial 
frequency, their orientation and their spatial phase.  The regular firing properties of 
grid cells suggests that neural circuits can represent stimuli along continuous dimen-
sions of space and time.   

The physiological properties of these structures may contribute to the role of the 
hippocampal formation in memory for the sequential order of stimuli. Hippocampal 
lesions impair the ability of a rat to complete specific sequences of odor stimuli [1] or 
to respond on the basis of the order of odor stimuli [2,3].  In addition, hippocampal 
lesions impair the ability to perform tasks requiring retrieval of sequences of spatial 
responses to different locations [4-7].   

Many previous models of hippocampal function have focused on its role in spatial 
memory by forming representations for goal directed spatial behavior [18-21]. These 
models focus on learning of a global gradient to a single goal location, and do not 
focus on the encoding and retrieval of specific spatial trajectories within the environ-
ment. However, many memory tasks require retrieval of specific trajectories, rather 
than using a global gradient toward a single goal location. For example, in tasks such 
as the 8-arm radial maze [22], the delayed spatial alternation task [23] and the version 
of the Morris water maze using a new platform location on each day [24], the encod-
ing and retrieval of previously generated trajectories can guide correct behavior in the 
task. Behavior in these tasks is impaired by hippocampal lesions, supporting the po-
tential role of the hippocampus in the selective encoding and retrieval of trajectories. 
It has been proposed that the learning of spatial trajectories may be a special case of a 
general capacity for learning sequences within the hippocampus, including sequences 
of events in an operant task [25].   

Some previous models of the hippocampus have focused on encoding and retrieval 
of sequences [6,26-31].  However, most previous models primarily focus on encoding 
associations between sequential states (items or locations). The data and modeling 
reviewed here takes a different approach, in which each individual state (location or 
sensory input) is associated with the subsequent action (movement) leading to the 
next state. This allows an explicit representation of the time duration of sequences 
during retrieval, and allows retrieval to function across continuous dimensions of 
space and time. 

2   Cellular Mechanisms for Path Integration 

Medial entorhinal cortical neurons display cellular properties that could provide the 
basis for path integration.  Path integration essentially requires integration of a veloc-
ity signal during movement in the environment.  This integration could be mediated 
by either graded persistent spiking or by membrane potential oscillations.  

In brain slice preparations of medial entorhinal cortex, pyramidal neurons show per-
sistent spiking activity after a depolarizing current injection or a period of repetitive  
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synaptic input [32-35].  Pyramidal neurons in layer II of medial entorhinal cortex show 
persistent spiking that tends to turn on and off over periods of many seconds [32].  
Pyramidal neurons in deep layers of medial entorhinal cortex can maintain spiking at 
different graded frequencies for many minutes [34] as shown in Figure 1.  The persistent 
spiking appears to be due to muscarinic or metabotropic glutamate activation of a cal-
cium-sensitive non-specific cation current [35-37].  Persistent firing has also been shown 
in layer III of lateral entorhinal cortex [33]. The graded  persistent firing shown in deep 
layers form the basis for path integration. The graded persistent spiking could allow these 
neurons to integrate synaptic input over extended periods, causing a graded change pro-
portional to the summed magnitude of excitatory input.  If the excitatory input contains a 
velocity signal, it would allow path integration.  The velocity signal could be provided by 
cells that have been shown to respond on the basis of head direction of the rat.  These 
cells are in areas that also contain neurons responding on the basis of translational veloc-
ity.  Combination of this activity could provide a speed-modulated head direction signal 
that would correspond to a velocity signal appropriate for path integration. 

xy
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Frequency or phase Internal path 

x

y

x

y

Trajectory 

Persistent spiking 
Membrane potential oscillations 

 

Fig. 1. Path integration could be mediated by graded persistent spiking (upper left) or mem-
brane potential oscillations (upper right). As the rat follows a trajectory through space (left), the 
activation of speed-modulated head direction cells can progressively alter graded persistent 
firing or oscillation phase, allowing change based on the integral of movement relative to one 
head direction (center).  The inverse transform of this internal integration representation recre-
ates the trajectory (right). 

 
Entorhinal neurons could also integrate excitatory input through a smooth shift in 

the phase of membrane potential oscillations in neurons that show intrinsic membrane 
potential oscillations. Entorhinal layer II stellate cells show subthreshold membrane 
potential oscillations when depolarized near firing threshold [38,39].  These are small 
oscillations of a few millivolts in amplitude that can influence the timing of action 
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potentials [40] and can contribute to network oscillations [41,42].  The oscillations 
appear to be due to a hyperpolarization activated cation current or h-current [43], that 
differs in time constant along the dorsal to ventral axis [44].  Depolarizing input  
increases the frequency of these oscillations such that the phase of the oscillation 
integrates the depolarizing input over time.  Membrane potential oscillations do not 
usually appear in layer II or layer III pyramidal cells [39], but are observed in layer V 
pyramidal cells, where they may be caused by M-current [45].  Membrane potential 
oscillations do not appear in neurons of the lateral entorhinal cortex [46].  The fre-
quency of membrane potential oscillations differs systematically along the dorsal to 
ventral axis of the medial entorhinal cortex [47]. Modeling shows how voltage-
dependent modulation of the frequency of these oscillations could underlie differ-
ences in grid cell firing properties along the dorsal to ventral axis [47-50].  Excitatory 
input from head direction cells can alter the frequency of these oscillations, thereby 
shifting the relative phase of individual oscillations.  The shift in phase is proportional 
to the integral of prior input, allowing phase to provide an alternate mechanism for 
integration of a velocity signal. 

3   Possible Mechanisms of Grid Cell Firing 

The regular spatial firing of grid cells in entorhinal cortex indicates that these neurons 
have accurate information about spatial location.  This could be obtained by a number 
of different physiological mechanisms for path integration. Thus, there are a number 
of different ways in which grid cells firing properties could be modeled.  These in-
clude two broad categories of models dependent on either: 1. network attractor  
dynamics, or 2. intrinsic neuron properties. These two broad classes of models are 
compatible. Both mechanisms could exist in parallel.   

Previous published models that have simulated grid cell firing properties based on 
attractor dynamics within a network of neurons [17,51]. The grid cell pattern arises 
from circularly symmetric connectivity with nearby excitatory connections and 
longer-range inhibitory connections, giving a “Mexican-hat” profile of connectivity 
strength. Different mechanisms are used for training this connectivity pattern in dif-
ferent models.  An alternate network model utilizes neurons that fire with a high spa-
tial frequency in the environment. If these cells with different high spatial frequencies 
interact, it causes a pattern of interference resulting in the lower frequency pattern 
corresponding to the grid cell firing properties [52].  These models account for certain 
aspects of grid cell firing, but do not yet describe how the high spatial frequency fir-
ing can be obtained. 

Within the class of intrinsic neuron properties, there are multiple related mecha-
nisms that could underlie grid cell firing. These could depend on either  membrane 
potential oscillations or persistent firing. The first single cell model of grid cell firing 
used interference of membrane potential oscillations to obtain grid cell firing proper-
ties [49,50,53]. In this model, excitatory synaptic input from speed-modulated head 
direction cells alters the frequency of membrane potential oscillations within single 
dendrites, thereby shifting the phase of firing relative to other dendrites.  

Experimental data from entorhinal cortex demonstrates how intracellular mem-
brane potential oscillations could provide this mechanism of the model [47,48]. In 
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particular, the model depends upon the fact that entorhinal stellate cells show mem-
brane potential oscillations around theta frequency [38,39,43,47], and these mem-
brane potential oscillations are increased in frequency by depolarization. There are 
excitatory projections to entorhinal cortex stellate cells from the postsubiculum [54] 
and deep layers of entorhinal cortex [16], both of which contain head direction cells.  
Thus, active head direction cells can directly depolarize entorhinal stellate cells.  The 

Burgess model [49] uses the speed modulated head direction )(th
v

 to regulate the 

intrinsic oscillation frequency of different dendritic branches of entorhinal stellate 
cells as summarized by the following equation: 

 
∏ ∫ +++Θ=

i

t

i dhBtftftg )}]))((2cos()2{cos([)( 0
0

ϕττππ rv

              

(1) 

Where g(t) represents the firing of a single grid cell over time.  Πi represents the 
product of the different dendritic oscillations receiving input from different compo-
nents of the head direction vector with index i, and Θ represents a Heaviside step 
function output (the model has output 1 for any value above a threshold).  The intrin-
sic oscillations have frequency f, and the modulation of this frequency is scaled by a 
constant B resulting in the beat frequency f*B=fb.  The dendritic branches each have 
an initial phase ϕ0.  This creates grid cell firing fields with spacing dependent upon 
modulation of the intrinsic oscillation frequency fb [47,48].  The sum of the somatic 

oscillation with frequency f and each dendritic oscillation with frequency )(thfBf
v

+  
results in an interference pattern that has an envelope with a frequency equal to the 

difference of the two frequencies )(thfB
v

. 
The model described above makes a number of assumptions that are strong predic-

tions about network properties, and are not completely consistent with available data.  
This includes: 1.) The model requires oscillations of distinct frequencies in different 
parts of one neuron, whereas simulations of stellate cells suggest strong synchroniza-
tion properties for oscillations in single cells. 2.) The model breaks down with noisy 
oscillations, whereas data suggests considerable noise in oscillation phase. 3.) The 
model requires intrinsic oscillations for formation of grid cells, whereas intracellular 
recording shows an absence of membrane potential oscillations in layer III cells in 
entorhinal cortex despite the fact that they show grid cell properties .   4.) The model 
does not yet address the formation of grid cells in deep layers that show firing 
strongly dependent on head direction.   

The model also makes basic assumptions about head direction cells that do not 
necessarily fit the data. 5.) The model requires input from head direction cells with 60 
degree differences in angle of selectivity. 6.) The model uses cosine tuned head direc-
tion cells, whereas most experimentally described head direction cells have narrower 
tuning functions with a triangular shape.  7.) The model requires speed-modulated 
head direction cells, whereas most actual head direction cells are not speed-
modulated. 8.) The simplest model uses head direction cells that provide both positive 
and negative inputs.  To match real head direction cells, these inputs can be rectified 
to be all positive, but this requires separate excitatory and inhibitory inputs from cou-
pled pairs of head direction cells at 180 degree angle differences. 
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Other models of grid cells can be created based on intrinsic properties that integrate 
the speed-modulated head direction signal.  The interference of oscillations could take 
place in different ways. For example, the oscillations could cause dendritic spiking 
that then interacts to cause somatic spiking. Alternately, oscillations in individual 
entorhinal stellate cells could be modulated by pairs of head direction inputs that shift 
the frequency up or down. If these cells spike on the peak of each oscillation, they 
will not show any location modulation in firing rate, but neurons could show grid cell 
responding if they receive convergent synaptic input from cells whose phase is deter-
mined by head direction inputs with 60 degree differences. 

Other models can utilize persistent spiking properties of neurons. For example, in-
stead of spiking dependent upon membrane potential oscillations, rhythmic spiking 
could be provided by intrinsic graded persistent spiking. If the frequency of this spik-
ing is increased and decreased by head direction input, it can cause spiking with phase 
dependent upon location. Other neurons receiving input from these graded persistent 
spiking neurons can fire in a grid cell pattern dependent on synchronous input from 
neurons receiving different head direction inputs tuned at 60 degree intervals. Alter-
nately, the grid cell firing could depend upon the intrinsic tendency for the persistent 
firing to turn off and on during sustained depolarization.  This could allow a neuron 
receiving opposite head direction input to show spatially periodic firing dependent 
upon the integration of the opposite head direction inputs. 

4   Circuit Model of Episodic Memory 

The interaction of head direction cells and grid cells described here provides a poten-
tial mechanism for episodic memory involving the storage of trajectories through 
space and time [55]. This model uses a functional loop that encodes and retrieves 
trajectories via three stages: 1.) head direction cells update grid cells, 2.) grid cells 
update place cells, and 3.) place cells activate associated head direction activity [55].  
This model is consistent with the anatomical connectivity. The head direction cells 
could update grid cells via projections from the postsubiculum (dorsal presubiculum) 
to the medial entorhinal cortex [54,56,57]. Grid cells can update place cells via the 
extensive projections from entorhinal cortex layer II to dentate gyrus and CA3 and 
from layer III to region CA1 [58,59].  Place cells can become associated with head 
direction activity via projections from region CA1 to the subiculum [58,60], and pro-
jections from the dorsal and distal regions of the subiculum to the postsubiculum and 
medial entorhinal cortex [61],  which contain head direction cells.  

During initial encoding of a trajectory, this head direction cell activity vector is set 
by the actual head direction of the rat during exploration, and associations are en-
coded between place cell activity and head direction activity. During retrieval, the 
head direction activity depends upon synaptic input from place cell representations.   

The model presented here is effective for performing episodic encoding and re-
trieval of trajectories in simulations [55], including trajectories based on experimental 
data or trajectories created by an algorithm replicating foraging movements of a rat in 
an open field [48].  During encoding, a series of place cells are created associated 
with particular locations.  Each place cell is also associated with input from the grid 
cell population activity and with the head direction vector that occurred during the 
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initial movement from that location.  For retrieval, the simulation is cued with the grid 
cell phase vector and head direction vector present at the start location. The head 
direction vector updates the grid cell phase vector, which alters the activity of grid 
cells. The grid cell firing drives place cells associated with subsequent locations on 
the trajectory.  

The activation of each new place cell activates a new head direction vector hp asso-
ciated with that place cell. This new head direction vector then drives the further up-
date of dendritic phases of grid cells. This maintenance of the head direction vector 
might require graded persistent spiking [34] of head direction cells in deep layers of 
entorhinal cortex. The retrieval of the place cell activity representing the state drives 
the retrieval of the new head direction vector representing the action from that state.  
This action is then used for a period of time to update the grid cell state representation 
until a new place cell representation is activated.   

Because retrieval of the trajectory depends on updating of phase by head direction 
cells, this allows retrieval of a trajectory at a time course similar to the initial encod-
ing. This can allow effective simulation of the slow time course of place cell replay 
observed during REM sleep [62]. The spread of activity from place cells to cells cod-
ing head direction could contribute to patterns of firing in the postsubiculum that 
appear as cells responding dependent on both place and head direction [63].  These 
cells might code the action value for retrieval of a trajectory from a particular loca-
tion, firing only when actual head direction matches the head direction previously 
associated with specific place cell activity. The strong theta phase specificity of these 
cells could be due to separate dynamics for encoding and retrieval within each cycle 
of theta rhythm [64].  These cells might selectively fire during the retrieval phase. 
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Abstract. In this paper we review a model of learning based on the
Spike Timing Dependent Plasticity (STDP), introduced in our previous
works, and we extend the analysis to the case of multiple frequencies,
showing how the learning rule is able to encode multiple spatio-temporal
oscillatory patterns with distributed frequencies as dynamical attractors
of the network.

After learning, each encoded oscillatory spatio-temporal pattern who
satisfy the stability condition forms a dynamical attractor, such that,
when the state of the system falls in the basin of attraction of one such
dynamical attractor, it is recovered with the same encoded phase re-
lationship among units. Here we extend the analysis introduced in our
previous work, to the case of distributed frequencies, and we study the
relation between stability of multiple frequencies and the shape of the
learning window. The stability of the dynamical attractors play a crit-
ical role. We show that imprinting into the network a spatio-temporal
pattern with a new frequency of oscillation can destroy the stability of
patterns encoded with different frequency of oscillation. The system is
studied both with numerical simulations, and analytically in terms of or-
der parameters when a finite number of dynamic attractors are encoded
into the network in the thermodynamic limit.

1 Introduction

Recent advances in experimental brain research have generated renewed aware-
ness and appreciation that the brain operates as a complex nonlinear dynamic
system. From the pioneer work of V.Braitenberg E.R.Caianiello F Lauria and N.
Onesto titled ”A system of coupled oscillators as a functional model of neural
assemblies” published in 1959 [1] the idea that brain can be modeled as a system
of coupled oscillators has attracted a lot of attention, especially in recent years.

The growing interest in neuronal oscillations [3,4] is a results of several devel-
opments. Whereas in the past one could only observe oscillations in the EEG,
nowadays phase locked oscillatory activity has been recorded in many in-vitro
and in-vivo systems, and it’s also possible to create them under controlled sit-
uations [5], [6]. Biophysical studies revealed that neural circuits and even single
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neurons are able to resonate and oscillate at multiple frequencies [7], [8], These
results led to the tantalizing conjecture that synchronized and phase locked os-
cillatory networks play a fundamental role in perception, memory, and sensory
computation [3,4,45]. The research field of ”neural oscillations” has created an
interdisciplinary platform that cut across mathematics, neuroscience, biophysics,
cognitive psychology, computational modeling and physics. At the same time, it
have been observed in hippocampus and other brain areas, that spatio-temporal
patterns of neural activity of awake state are replayed during sleep [9,10,11]. The
observed replay is supposed to play a role in the process of memory consolida-
tion [11]. Not only many repeating spikes sequences has been observed replayed
compressed in time [9], but also patterns of firing rate correlations between neu-
rons have been observed (in rat mPFC during a repetitive sequence task) to be
preserved during subsequent sleep, and compressed in time [11]. Notably, reverse
replay of behavioral sequences in hippocampal place cell s during the awake state
has also been observed [12].

Recent experimental findings further underlined the importance of dynamics
by showing that long term changes in synaptic strengths depend on the precise
relative timing of pre- and post-synaptic firing ( [27, 31, 32, 30,29,28, 33]) which
suggest that precise timing of neurons activity within neuronal networks could
represent information.

Many oscillatory models has been proposed for different areas of the brain, as
coupled oscillators in a phase-representation (see, among others, [13, 14, 15, 16,
20,22,23,43,44] and references therein), chaotic oscillators models [21], reduced
models of coupled Excitatory and Inhibitory (E-I) units [24, 25] and coupled
spiking neurons [17,18,19], and many experimental features has been accounted
by these models.

In this paper we show how a learning rule [2,25] based on the STDP learning
window is able to encode multiple periodic spatio-temporal patterns with differ-
ent frequencies as attractors of the network dynamics, such that these spatio-
temporal patterns are replayed spontaneously, depending from initial conditions.
With respect to our previous studies, here we extend the analysis to the case
of distributed frequencies, studying how the same network can be resonant to
different frequencies. This is particularly interesting since experimentally has
been observed that the same system is able to sustain different rhythms (see
also other works in this volume). In our model, learned memory states can be
encoded by both the frequency and the phases of the oscillating neural popula-
tions, enabling more efficient and robust information coding than in conventional
models of associative memory.

This paper is composed of three parts. In the first part we describe the model
and the learning rule. After learning, the dynamic of the network of N coupled
nonlinear units is analyzed, looking for the analytical conditions under which
the learned patterns are dynamical attractors of the dynamics. In the second
part, we extend the order parameter analysis and the stability analysis that we
introduce in [2] to the case of encoded patterns with different frequencies. We
find that when we encode multiple patterns with distributed frequencies in the
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net, stability of each attractors depends from the set of frequencies encoded.
Encoding a pattern with a new frequency can destroy the stability of patterns
encoded with other frequencies. In the third part we discuss the learning rule,
and we investigate here (1) the relation between frequencies encodable as stable
attractors and shape of the learning window, (2) the relation between shape of
learning window and time scale of retrieval replay. The case of reverse replay is
also discussed.

2 The Model

The model has been introduced in [2]. We review its main ingredients here.
Dynamic equations of unit xi is

τd
d

dt
xi = −xi + F (hi) (1)

where transfer function F(h) denotes the nonlinear sigmoidal input-output rela-
tionship of neurons, τd is the time constant of unit xi (for simplicity, assume the
same for all units), and local field hi is defined by

hi =
∑

j

Jijxj (2)

where Jij is the connection after the learning procedure. Spontaneous activity
dynamics of the coupled nonlinear system is determined by the function F(h)
and by the coupling matrix Jij . TheJij is learned using the proposed learning
procedure described in next section (2.1) We keep explicitly the time constant
τd to see its interaction with the time scale of plasticity and its role to determine
the time scale of the spontaneous dynamics after learning, i.e. the frequency of
replay.

2.1 Spike-Timing-Dependent Plasticity and the Learning Rule for
Dynamical Attractors

Plasticity of synaptic connections is regarded as a cellular basis for the develop-
mental and learning-related changes in the central nervous system. In neocortical
and hippocampal pyramidal cells has been found [27,31,32,30,28,33,34], that the
synaptic strength increases (long-term potentiation (LTP)) or decreases (long-
term depression (LTD)), whether the pre-synaptic spike precedes or follows the
post-synaptic one by few ms, with a degree of change that depend from the delay
between pre and post-synaptic activity via a learning window that is asymmet-
ric with respect to time reversal. This temporally asymmetric form of synaptic
plasticity was also employed at the same time or earlier in a model for auditory
localization by relative timing of spikes from two ears [37, 38]. Here we ana-
lyze the behavior of the simple model of eqs. (1,2), when we use the asymmetric
time-dependent learning rule, proposed in [26,25,2], inspired to the experimental
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findings cited above. According to the asymmetric time-dependent learning rule
that we study here, the change that occurs in interval [−T, 0] can be formulated
as follows:

δJij(T ) ∝ 1
T

∫ 0

−T

dt

∫ 0

−T

dt′ xi(t)A(t − t′)xj(t′) (3)

for synaptic weight Jij , where xj and xi are the pre- and post-synaptic activities.
The learning window A(τ) is the measure of the strength of synaptic change when
there’s a time delay τ between pre and post-synaptic activity.

Activity-dependent modification of synaptic strengths due to the proposed
learning rule in eq. (3) is sensitive to correlations between pre- and post-synaptic
firing over timescales of tens of ms when the range of A(τ) is tens of ms.

Note that eq. (3) reduces to the conventional Hebbian one (used, e.g., in
[47]), δCij ∝ 1

T

∫ T

0 dt xi(t)xj(t), when A(τ) ∝ δ(τ). However, to model the
experimental results of STDP such as [28, 34] the kernel A(τ) should be an
asymmetric function of τ , mainly positive (LTP) for τ > 0 and mainly negative
(LTD) for τ < 0. The shape of A(τ) strongly affect Jij and the dynamics of the
networks, as discussed in the following. Examples of learning windows used here
are shown in Figs 3(A) and 4(A).

If the learning rule proposed here is used with a proper learning window, then
the network is able to memorize multiple dynamical attractors and replay them
selectively. This is studied both numerically and analytically for the periodic
patterns as described in the following.

Let us present an input Iµ
j (t) to our network and we apply our learning rule

(3). In the brain, cholinergic modulation can affect the strengths of long-range
connections; these are apparently reduced strongly during learning [35, 36]. In
our model we therefore make the assumption that connections Jij are ineffective
during learning (while they are plastic and learn their new value), and the net-
work dynamics is driven by the external input Iµ

j (t), τdẋj = −xj + Iµ
j (t), giving

xj(t) = Lµ
j (t). Let us consider the oscillatory input Iµ

j such that activity being
encoded is Lµ

j (µ = 1..., P , j = 1, ..., N)

Lµ
j (t) = 1/2(1 + cos(ωµt − φµ

j )) (4)

characterized by amplitudes 1, frequency ωµ, and phases φµ
j on units j. We study

analytically the system when the phases φµ
j of the encoded patterns are chosen

randomly in [0, 2π). In our previous study [2] all frequencies were assumed equals
ωµ = ω0, while in the present study we let ωµ to be arbitrary values. Spatio-
temporal patterns Lµ

i are assumed to be positive-valued since these patterns
represent spatio-temporal firing rates. We can rewrite eq. (4) as

Lµ
j (t) =

1
2
+

1
4
(ξµ

j e−iωµt + c.c.), (5)

where c.c. is complex conjugate, and we denote with ξµ the complex vector whose
components

ξµ
j = eiφµ

j (6)

represents the phase shifts among units of the encoded oscillatory pattern µ.
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We substite xj(t) = Lµ
j (t) in eq. (3) to calculate Jij , taking the limit T →

∞, and assuming A(τ) decays exponencially or even faster, we obtain that the
change that occurs in interval [−∞, 0] is

Jµ
ij =

1
N

Re[Ã(ωµ) ξµ
i ξµ∗

j ] +
2
N

Ã(0) =
1
N

|aµ|cos(φµ
i − φµ

j + ϕµ) +
2
N

Ã(0) (7)

where we have explicitly used the conventional normalization factor 1/N for
convenience in doing the mean field calculations, while the factor

Ã(ωµ) = aµ = |aµ|eiϕµ =
∫ ∞

−∞
dτ A(τ)e−iωµτ (8)

is the Fourier transform of the learning window. Index µ in aµ and ϕµ refers to
the dependency from the encoded frequency ωµ of pattern µ. The factor Ã(ωµ)
comes from eq. (3) when xi(t) are oscillatory, and it can be thought as an effective
learning rate at a frequency ωµ.

When we encode multiple patterns µ = 1, 2, ...P , the learned weights are sums
of contributions from individual patterns. After learning P patterns, each with
frequency ωµ and phase-shift vector ξµ, one get the connections

Jij =
P∑

µ=1

Jµ
ij =

1
N

P∑
µ=1

Re
(
Ã(ωµ)ξ

µ
i ξµ∗

j

)
+

b

N

=
1
N

P∑
µ=1

|aµ|cos(φµ
i − φµ

j + ϕµ) +
b

N
(9)

with

b = 2PÃ(0) ≡ 2P

∫ ∞

−∞
A(t)dt (10)

The dependence of the neural connections Jij on ξµ
i ξµ∗

j is just a natural general-
ization of the Hebb-Hopfield factor ξµ

i ξµ
j for (real) static patterns, which becomes

the familiar outer-product form for complex vectors ξ.

2.2 Numerical Simulations

If the learning rule (9), with a proper shape of the learning window A(t) is used,
then the network is able to memorize the encoded patterns as stable attractors
of the dynamics, and to replay them selectively. We consider P periodic patterns
(µ = 1..., P , j = 1, ..., N) characterized, as in eq. (4), by frequencies ωµ and
random phases φµ

j , where ξµ
j = eiφµ

j is the vector of phase shift among units
in pattern µ. Numerical simulations of eqs. (1,2) where Jij is given by eq. (9)
is shown in Fig. 1. Two periodic patterns Lµ(t) (µ = 1,2) with random phases
and frequencies ω1 = 0.03ms−1, ω2 = 0.09ms−1 have been memorized in a
network of N=10000 units according to the learning rule (9), by using learning
window shown in Fig.4. This gives the factor Ã(ωµ) = |aµ|eiϕµ , with |a1| = 1.899,
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|a2| = 1.760, ϕ1 = −0.27π, ϕ2 = −0.1π and b = 0. The factors Ã(ωµ), µ = 1, 2
are chosen so that both patterns become stable attractors of the dynamics (see
section 2.3). When we carry out the numerical integration of the dynamics, under
the initial condition xi(0) = Lµ

i (0) with µ = 1, the first pattern is retrieved, and,
analogously the second is retrieved with initial condition close to the second
pattern. Figure shows that the phase relationship among units in Fig. 1(A) are
well reproduced in the collective oscillation during replay, shown in Fig.1(C);
while the details of the wave forms and the frequency are different. In this sense,
initial condition xi(0) = Lµ

i (0) leads to retrieval (i.e. replay) of pattern Lµ, since
the activity preserve the encoded phase relationship among units. The same
sequence (i.e. the same phase shifts relationship among units) is replayed, but at
a different oscillation frequency. Note indeed that the time-axis scale of Fig. 1(A)
is different from that of Fig. 1(C). Later analysis will show that the relationship
among the frequency ωµ encoded into Jij and the frequency of the network
dynamics ω̃µ depends both from the single unit time-constant τd and, notably,
from the shape of learning window used to learn Jij . Figs.1(C) and 1(D) show
also that the frequency of replay of pattern µ = 1 is different of frequency of
replay of pattern µ = 2, since indeed the two encoding frequencies were different.

To understand analytically this behavior, and the relation among stability
of attractors and frequencies, we define an order parameter which measure the
overlap between the network activity xi(t) and the pattern Lµ(t), as the scalar
product

mµ =
1
N

N∑
i=1

ξi
µxi (11)

i.e. the overlap between the network activity and the encoded pattern of phase
shifts. Order parameters mµ are complex-valued which exhibits periodic oscil-
lation on complex plain (see Figs.1(E) and 1(F)). The amplitude of oscillation
of the order parameters is high when pattern is replayed, and is zero for not-
replayed pattern. Replay frequency ω̃µ takes a different value from encoded pat-
tern frequency ωµ since replay occurs at a time scale different from encoded
patterns.

2.3 Order Parameter Dynamics

Following [2] we rewrite local field (2) in eq. (1) in terms of order parameters
mµ and X ,

hi =
∑

µ

Re
(
Ã(ωµ)ξ

µ
i mµ∗

)
+ bX. (12)

where X is the the mean activity

X =
1
N

∑
i

xi. (13)

and overlaps mµ = (1/N)
∑

i ξµ
i xi as in eq.11.



44 S. Scarpetta, M. Yoshioka, and M. Marinaro

A: encoded pattern L1(t) B: encoded pattern L2(t)

C: replay of first pattern D: replay of second pattern

E: order parameters m1 and m2 F: order parameters m1 and m2

Fig. 1. In this numerical simulation, two periodic patterns Lµ(t) (µ = 1,2) with
random phases and frequencies ω1 = 0.03ms−1, ω2 = 0.09ms−1 have been memorized
in a network of N=10000 units according to the learning rule (9), by using learning
window in Fig. 4 which gives factors Ã(ωµ) = |aµ|eiϕµ , with |a1| = 1.760, |a2| =
1.899, ϕ1 = −0.27π, ϕ2 = −0.1π and b = 0. The factors Ã(ωµ), µ = 1, 2 are such that
both patterns are stable attractors of the dynamics (see section 3). (A,B): The first
six units of the two encoded pattern Lµ(t) are plotted as a function of time. Activities
of the six units of first pattern, Lµ

i (t), i = 1, .., 6, µ = 1, are shown in A, while the
second pattern, Lµ

i (t), i = 1, .., 6, µ = 2, is shown in B. (C,D): The behavior of first six
neurons xi in the numerical simulation of eq. (1) are plotted as a function of time. The
numerical integration of equation (1) are computed with the transfer function F(h)
given by F (h) = 1

2 (1+ tanh(βh)) with sufficient large β (β = 100). Initial condition set
to xi(0) = Lµ

i (0) with µ = 1 induces the retrieval (replay) of pattern µ = 1, as shown
in (C), while initial condition xi(0) = Lµ

i (0) with µ = 2. induces the retrieval (replay)
of second pattern, as shown in (D). (E,F): The time evolutions of order parameters
mµ, with µ = 1, 2, defined by eq. (11) are plotted as a function of time. The real (red
line) and the imaginary part (dashed blue line) of mµ oscillate in time, in agreement
with predictions. Module (dotted pink line) is constant in time. Fig. (E) refers to initial
condition as in (C) with replay of pattern µ = 1, while fig. (F) correspond to picture
(D) with replay of pattern µ = 2. Colors are in the online version of the paper.
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By representing the overlap mµ in the polar form

mµ = |mµ|eiθµ

. (14)

and taking the limit N → ∞ for finite P to replace the summation over i by the
average 〈.〉 defined by

〈
f
(
ξ1, .., ξP

)〉
= ( 1

2π )
P
∫ 2π

0
dφ1..

∫ 2π

0
dφP f(eiφ1

, .., eiφP

),
as in [2], from eqs. (1,2, 13,14) we obtain a set of nonlinear differential equations
for the module and the phase of overlap mµ, and mean activity X:

τd
d

dt
|mµ| = −|mµ| +

〈
Re (ξµ)F

(∑
ν

Re
(
Ã(ων)ξν |mν |

)
+ bX

)〉
(15)

and

τd
d

dt
θµ =

1
|mµ|

〈
Im (ξµ)F

(∑
ν

Re
(
Ã(ων)ξν |mν |

)
+ bX

)〉
. (16)

τd
d

dt
X = −X +

〈
F

(∑
ν

Re
(
Ã(ων)ξν |mν |

)
+ bX

)〉
. (17)

Equation (15) describes the dynamics of absolute value of overlap mµ, while
dθµ/dt in eq. (16) gives the frequency of oscillation of overlap mµ. Equations (15)
and (17) yield (P + 1)-dimensional closed dynamics for the order parameters
|mµ| (µ = 1, . . . , P ) and X .

To investigate the properties of this order parameters dynamics, we analyze
solutions of dynamics (15) and (17) corresponding to successful replay of one
encoded pattern. Safely we can assume pattern with µ = 1 to be the retrieved
one. In the successful pattern retrieval (replay), as the one described in Fig. 1,
overlap |m1| eventually settles into the stationary state with the constant ab-
solute value, while other overlaps mµ(µ = 2, . . . , P ) remain close to zero. We
mathematically define this retrieval state as∣∣m1

∣∣ �= 0, (18)∣∣m2
∣∣ = ∣∣m3

∣∣ = . . . =
∣∣mP

∣∣ = 0, (19)

and
dθ1

dt
�= 0 (20)

d

dt

∣∣m1
∣∣ = d

dt
X = 0, (21)

The retrieval frequency ω̃1, namely, the oscillation frequency of overlap in re-
trieval state µ = 1, is

ω̃1 =
dθ1

dt
, (22)
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Solutions of eqs. (15-17), corresponding to retrieval of pattern µ = 1, are:

X =
〈
F
(
Re
(
Ã(ω1)ξ1

∣∣m1
∣∣)+ bX

)〉
=

1
2π

∫ 2π

0

F
(∣∣∣Ã(ω1)

∣∣∣ ∣∣m1
∣∣ cos (φ1

)
+ bX

)
dφ1. (23)

∣∣m1
∣∣ = 〈Re (ξµ)F

(∑
ν

Re
(
Ã(ων)ξν |mν |

)
+ bX

)〉

= cosϕ1
1
2π

∫ 2π

0

cosφ1F
(∣∣∣Ã(ω1)

∣∣∣ ∣∣m1
∣∣ cosφ1 + bX

)
dφ1. (24)

ω̃1 ≡ dθ1

dt
= − tanϕ1

τd
= − 1

τd

Im(Ã(ω1))
Re(Ã(ω1))

. (25)

A solution of Eqs. (23,24,25) determines |m1| and X in retrieval state. These
equations can be solved numerically for arbitrary form of function F (h), and
analytically in some cases. This analysis shows when there exists a solution of
Eqs. (23,24,25) then it is a collective oscillation with frequency ω̃1 = − tanϕ1

τd
, and

overlap |m1| between x(t) and pattern L1(t). Retrieval state, i.e. replay of en-
coded pattern, is a collective oscillation of the network’s units, with a phase-shift
relation among units equal to the phase-shifts relation of the encoded pattern;
The collective oscillation during replay has a frequency ω̃1 which is related but
not equal to the encoded pattern’s frequency, and depends from the learning
window shape (see eq. 25).

In some cases explicit analytical solution exists. When the nonlinear transfer
function F (h) is the Heaviside function of the form

F (h) = H(h) =
{
0, h < 0
1, 0 ≤ h

, (26)

from Eqs. (23,24,25) one get

∣∣m1
∣∣ = 1

π
cosϕ1 sin(πX),

sin(2πX) = − b

Re(Ã(ω1))
2πX

d

dt
θµ = ω̃1 = − tanϕ1

τd
(27)

where ϕ1 is defined in eq. (8). The solution, when pattern 1 is retrieved, depends
only from parameters of pattern 1, and in particular from Ã(ω1), and do not
depends on all others Ã(ων), ν = 2, .., P (however the stability of this solution
will depend from all Ã(ων), ν = 1, .., P , as it will be shown in the next section).
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With b = 0 (balance between potentiation and depression in learning window∫∞
−∞ A(t)dt = 0), solutions simplify furthers and one obtains

X = 1/2∣∣m1
∣∣ = (1/π) cosϕ1

dθ1

dt = ω̃1 = − tanϕ1

τd
(28)

Eqs. (28) means that

∣∣m1
∣∣ = (1/π)

√
1

1 + (tanϕ1)2
= (1/π)

√
1

1 + (ω̃1τd)2
(29)

It means that the time decay constant of single unit dynamics τd determines
the way at which order parameter decreases with increase of replay frequency
ω̃1. When |m| takes a low value, then xi(t) shows small amplitude oscillations
around a flat activity 0.5, while largee m gives larger amplitudes oscillations
aroung 0.5 (see also Fig.1(E) and 1(F)).

3 Multiple Frequencies and Stability

The solutions (23-25) yield fixed points of the dynamics (15-17). However, some
of these solutions are unstable fixed points, which are useless for the purpose of
stable associative memories. When a pattern is encoded as an unstable solution,
during retrieval the network shows only a transient activation of that dynamical
pattern (see Fig.2). On the contrary when a solution is a stable attractor of the
dynamics, this solution is a spontaneous pattern of activity. This means that a
pattern encoded as a stable solution can emerge and stay active also in total
absence of external input, when the state of the network falls in the basin of
attraction of that pattern.

In [2], we analyze linear stability of solutions of Eqs. (23-25), in the case of mul-
tiple patterns (1 < P ) but with identical frequency ωµ = ω0 for all µ = 1, .., P .
Notably, in the case of the Heaviside function, solution state was always stable
for arbitrary finite value of P if b=0 and all patterns have same frequency. We
show here that, when patterns have multiple frequencies, stability is not assured
even if b=0, but condition of stability depends from the encoded frequencies.

When frequencies of encoded patterns are different, then the factor Ã(ωµ)
which enters in the learning rule Jij = 1

N

∑
µ Re[Ã(ωµ)ξµξµ∗] + b

N is not the
same for all patterns. This factor Ã(ωµ) have influence both on the size of order
parameter during retrieval solution |m1|, and also on the stability of such solu-
tions. Numerical simulations show that when we encode multiple patterns with
different frequencies each pattern can have a different stability. Fig.2 shows nu-
merical simulation results when we encode two oscillatory patterns with random
phases and two different frequencies, with factors Ã(ωµ) = |aµ|eiϕµ such that
pattern L2(t) is stable, and the pattern L1(t) is unstable. Fig. 2 shows that even
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if we try to recall pattern 1, after a short transient the network activity goes
far from pattern 1, and pattern 2 (the stable one) is replayed. If pattern 2 is
not encoded into the network, and frequency of pattern 1 is the only frequency
encoded into the net, then pattern 1 is a stable attractor. It is pattern 2 which
make pattern 1 to become unstable.

To understand this behavior and find the analytical condition for stability, we
extend here the linear stability analysis to the case when multiple patterns with
multiple frequencies are encoded.

To study stability, we have to study dynamics of deviations of order param-
eters from the fixed point in eq. (18-21), i.e. perturbations of retrieved pattern
δ
∣∣m1
∣∣ as well as perturbations of non-retrieved patterns δ|mµ|(µ = 2, . . . , P ) and

δX . From eqs. (15-17, 23-25), dynamics of deviations δ|mµ| and δX are given
by

τd
d

dt

⎛⎜⎜⎜⎜⎜⎝
δX

δ
∣∣m1
∣∣

δ
∣∣m2
∣∣

...
δ
∣∣mP

∣∣

⎞⎟⎟⎟⎟⎟⎠ = B

⎛⎜⎜⎜⎜⎜⎝
δX

δ
∣∣m1
∣∣

δ
∣∣m2
∣∣

...
δ
∣∣mP

∣∣

⎞⎟⎟⎟⎟⎟⎠ (30)

with

B =

⎛⎜⎜⎜⎜⎜⎝
−1 + I(1, b) I(1, a1ξ1) I(1, a2ξ2) . . . I(1, aP ξP )

I(ξ1, b) −1 + I(ξ1, a1ξ1) I(ξ1, a2ξ2) . . . I(ξ1, aP ξP )
I(ξ2, b) I(ξ2, a1ξ1) −1 + I(ξ2, a2ξ2) . . . I(ξ2, aP ξP )

...
...

...
. . .

...
I(ξP , b) I(ξP , a1ξ1) I(ξP , a2ξ2) . . . −1 + I(ξP , aP ξP )

⎞⎟⎟⎟⎟⎟⎠
(31)

where we use an abbreviation

I(f, g) =
〈
Re (f)F ′ (Re

(
a1ξ1

∣∣m1
∣∣)+ bX

)
Re (g)

〉
. (32)

From definition of I(f, g) in eq. (32), it is straightforward to show

I (1, aξµ) = I
(
ξ1, aξµ

)
= I (ξµ, b) = I

(
ξµ, aξ1

)
= 0,

2 ≤ µ, (33)

and
I (ξµ, aνξν) = 0, 2 ≤ µ, ν, µ �= ν. (34)

We can rewrite matrix B in the form

B =

⎛⎜⎜⎜⎝
A 0

−1 + I(ξ2, a2ξ2)
. . .

0 −1 + I(ξP , aP ξP )

⎞⎟⎟⎟⎠ , (35)

where A represents the matrix defined by

A =
(

−1 + I (1, b) I
(
1, a1ξ1

)
I
(
ξ1, b

)
−1 + I

(
ξ1, a1ξ1

)) . (36)
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A: units’ activity B: order parameters m1 and m2

C overlap |m1| versus −ϕ1/π

Fig. 2. (A,B) In this numerical simulation, two periodic patterns Lµ(t) (µ = 1,2) with
random phases and different frequencies have been encoded in a network of N=10000
units. The factor Ã(ωµ) of the two patterns are such that only pattern 2 is a sta-
ble attractor, while pattern 1 is unstable. In particular it’s Ã(ωµ) = |aµ|eiϕµ with
|a1| = 1, ϕ1 = −0.4π for pattern 1, and |a2| = 1, ϕ2 = −0.1π for pattern 2, such
that Re(Ã(ω1)) < Re(Ã(ω2))/2 and stability condition is not satisfied for pattern 1.
The activities of the first six units is shown, when initial condition is xi(0) = L1(0).
Although the initial condition has high overlap with pattern 1 and very small overlap
with patter 2, the network activity, after a short transient, replay patter 2, because
pattern 1 is unstable and 2 is stable. In (B) the time evolutions of the order parameters
m1 and m2 during the same simulation is shown. The real (red line), the imaginary
part (dashed blue line), and the module (dotted pink line) of m1 (upper inset) and
m2 (lower inset) are shown as a function of time. The overlap |m1| of the unstable
pattern 1 decays after a short transient. Colors are in the online version of the paper.
In (C) the overlap |m1| (after the short transient) is shown as a function of parameter
−ϕ1/π, while pattern 2 is encoded with ϕ2 = −0.1π as in (A,B). We see, in agreement
with analytical calculations, that a critical value appears (−ϕ1/π = 0.34, correspond-
ing to Re(Ã(ω1)) = Re(Ã(ω2))/2), such that for lower values the pattern 1 is a stable
attractor, while for higher values the pattern 2 make pattern 1 unstable.
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We denote eigenvalues of matrix A by λ0 and λ1. Therefore, matrix B has the
same eigenvalues as matrix A, plus P − 1 eigenvalues

κν = −1 + I (ξν , aνξν) ν = 2, .., P (37)

The solution in Eqs. (23-25), corresponding to the retrieval of pattern 1, is stable
when the eigenvalues satisfy all the stability conditions:

Re (λl) < 0 and Re (κν) < 0, l = 0, 1. ν = 2, .., P (38)

While stability of solutions with a single encoded pattern (P = 1) is determined
only from λ0 and λ1, stability with multiple encoded patterns (1 < P ) requires
further evaluation of all P − 1 eigenvalues κν . Note that eigenvalue κν contains
both aν = Ã(ων) and a1 = Ã(ω1) in its definition, and indeed stability of pattern
1 depends from all encoded frequencies ων .

Let us apply the above analysis to the case when transfer function F (h) is
the Heaviside function eq.(26), in such a case we can evaluate analitically the
condition of stability.

Using the Heaviside function as a transfer function F (h) = H(h), and conse-
quently F ′(h) = δ(h), it’s:

I(ξ1, a1ξ1) = c12|a1|cos2(πX)cos(ϕ1)

I(1, a1ξ1) = c12|a1|cos(πX)

I(1, b) = c12b , I(ξ1, b) = c12bcos(πX)cos(ϕ1)

I(ξν , aνξν) = c1|aν |cos(ϕν)

where
c1 = 1/(2|a1|cos(ϕ1)sin2(πX)). (39)

then, eigenvalues λ0, λ1 and κν of matrix B are

λ0 = −1

λ1 = −1 +
|a1|cos2(πX)cos(ϕ1) + b

|a1|sin2(πX)cos(ϕ1)

κν = −1 +
|aν |cos(ϕν )

2|a1|cos(ϕ1)sin2(πX)
(40)

In the case when encoded patterns have all the same frequency, i.e. ωµ = ω0

discussed in [2], all eigenvalues κν are degenerate, and for example, when b = 0
we obtain κν = − 1

2 , and retrieval solution is always stable, independently from
number of encoded patterns P .
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On the contrary in the case when encoded patterns have distributed frequen-
cies, i.e. ωµ may depend from index µ, then stability condition (38) is not always
satisfied, even if b=0. Indeed, from (40), stability condition κν < 0 requires:

|a1|cos(ϕ1) >
|aν |cos(ϕν)
2sin2(πX)

ν = 1, .., P (41)

In particular when b = 0, i.e. when there is a balance between depression and
potentiation such that

∫∞
−∞ A(t)dt = 0, then λ0,1 = −1 and stability conditions

(38,40) become simply:

|a1|cos(ϕ1) >
|aν |cos(ϕν)

2
, ν = 1, .., P (42)

where aν , ϕν , defined in (8), depends from Fourier transform of learning window
at frequency ων .

This means that when we encode patterns with P different frequencies,
ω1,ω2,.,ωP , then these patterns are stable attractors only if the Fourier transform
of the learning window evaluated at these P frequencies satisfy the condition

ReÃ(ωµ) >
ReÃ(ων)

2
∀ν = 1, .., P and ∀µ = 1, .., P (43)

It means that the P frequencies can be encoded as stable attractors in the same
network only if the following equation is satisfied:

ReÃ(ωµ) ∈ [
cmax

2
, cmax] ∀ µ = 1, .., P (44)

where cmax is the maxµ Re(Ã(ωµ)), i.e., each value Re(Ã(ωµ)) is larger then half
of the maximum value cmax.

Each time that one of the values, let us say Re(Ã(ων)) is lower then half of
the maximum value cmax, the pattern encoded at that frequency ων is unstable.

Numerical simulations confirm this behavior. In Fig. 2(C) results are shown
when two patterns with two different frequencies have been encoded with factors
Ã(ω1) = eiϕ1 and Ã(ω2) = eiϕ2 (Note that here we artifically put Ã(ω1) = eiϕ1

and Ã(ω2) = eiϕ2 to check the validity of the present stability analysis, later we
use A(τ) explicitly). The order parameter |m1| is shown as a function of −ϕ1/π,
when ϕ2 is fixed (ϕ2 = −0.1π). Numerical simulation results (dots) are in good
agreement with prediction (line). They shows that at the point ϕ1 = −0.34π such
that cos(ϕ1) = cos(ϕ2)/2 there is a transition, from a retrieval state with m1 > 0
to a state with zero overlap m1 = 0. The pattern 2 make pattern 1 unstable when
ReÃ(ω1) < ReÃ(ω2)

2 . The behavior of the networkwhen ϕ1 = −0.4π, ϕ2 = −0.1π,
such that pattern 1 is unstable, is shown in Fig. 2.

These results imply that the possibility of the network to work at different
frequencies, and the set of frequencies encodable as attractors in a same network,
depends critically from the shape of learning window though eq. (44). In the
following paragraph we will examine the implications of particular shapes of
learning window on network dynamics.
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3.1 Learning Window Shape

From eqs. (23-25) and from stability conditions of retrieval solutions, (38,40),
one can see that shapes of learning windows where potentiation and depression
balance each other such that

∫∞
−∞ A(t)dt = 0 and therefore b = 0, maximize

capacity. Indeed, using the Heaviside function, for b ≡ 2P
∫∞
−∞ A(t)dt �= 0, there

is a critical number of patterns Pc (see also [2]), after which self-consistent so-
lutions (23-25) do not exist or are unstable with respect to λ1 or kν ; while for
b = 0 retrieval solutions exist, λ0 and λ1 satisfy the conditions (38), for each
finite value of P, and the only remaining proble is the stability condition (44).

Let us analyze further how learning window shape, where potentiation and
depression balance each other such that b = 0, determines the dynamics of the
attractor network. First of all, as shown in eq. (25), when a pattern is retrieved,
the frequency at which it is replayed depends explicitly from learning window
A(t) shape, and in particular is equal to ω̃1 = − tan(ϕ1)

τd
, where ϕ1 is the argument

of learning window’s Fourier transform evaluated at the encoding frequency. Also
the size of order parameter |m1| in retrieval state, which measures the overlap
between dynamics and the phase-relationships of the encoded patterns, depends
on the Fourier transform of learning window evaluated at the encoding frequency
(see eq.24). In the case in which the Heaviside function is chosen as F in (1),
and b = 0, then the size of |m1| do not depend from the module of Ã(ω1) but
only from its argument (see eq.(28)).

Asymmetry of the shape of learning window A(τ) with respect to τ → −τ
influence both retrieval state and its stability. Clearly ImÃ(ωµ) = 0 if A(τ) is
symmetric in τ and ReÃ(ωµ) = 0 if A(τ) is antisymmetric. Both these extreme
cases fails to encode and replay properly oscillatory patterns. When A(τ) is
symmetric, then replay frequency ω̃1 is zero (static output, no oscillation), while
in the limit of A(τ) perfectly antisymmetric the replay frequency tends to infinity
but with overlap |m1| which tends to zero.

Notably, Abarbanel et al in a recent paper [51] introduced and motivated an
function of A(τ), which gives a very good fit of different results. To understand
the implication of experimentally plausible learning window shapes of STDP, we
study the following function, taken from the one introduced and motivated by
Abarbanel et al [51],

A(τ) =
{

ape
−τ/Tp − aDe−ητ/Tp for τ > 0

ape
−τ/TD − aDe−ητ/TD for τ < 0

(45)

We use the same parameters taken in [51] to fit the data of Bi and Poo [30],

ap =
γ

1/Tp + η/TD
(46)

aD =
γ

1/TD + η/TD
(47)

with Tp = 10.2ms, TD = 28.6ms, η = 4, ap = 177, aD = 98. Notably, the function
(45) automatically satisfies the condition
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A: Learning window A(τ ) B: |m1| = cos(ϕ1)/π vs. ω1

C: Real part of Ã(ω) vs. ω D: Replay frequency ω̃ vs. encoded freq ω

Fig. 3. The learning window in eq. (45), with parameters which fit the experimental
data of Bi and Poo [30], is shown in (A) In (B) it’s shown retrieval’s overlap |m1| as a
function of encoding frequency |ω1| when A(t) in (A) is used, and transfer function is
the Heaviside function F (h) = H(h). In (C) the real part of the Fourier transform of
learning window, i.e. ReÃ(ω), is shown as a function of encoded frequency ω. This is
relevant to establish the set of frequencies that can be encoded as stable attractors in
the same network (see stability condition (38,44)). We plot in (D) the replay frequency
ω̃ (see eq. (22,25)) as a function of the encoded frequency ω when the learning window
shown in (A) is used. The frequency of replay in (D) is measured in units of τ−1

d , while
the encoded frequency is measured in ms−1.

∫ ∞

−∞
A(τ)dτ = 0 (48)

i.e. Ã(0) = 0 and b = 0.
From eq. (25) we get Fig. 3(D), showing the frequency of replay measured

in units of τd, as a function of the encoded frequency measured in ms−1, when
using the learning window (45) in Fig. 3(A). Numerical simulations confirm that
the time-scale of the retrieval depends from the time-constant of single unit
dynamics τd, and from the connectivity via the Fourier transform of A(t), in
agreement with Fig. 3(D). When a pattern with frequency ω is encoded into the
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A: Learning window A(τ ) B: |m1| = cos(ϕ1)/π vs. ω1

C: Real part of Ã(ω) vs. ω D: Replay frequency ω̃ vs. encoded freq ω

Fig. 4. The learning window in eq.(45) but time shifted of 5 ms, is shown in (A) Same
parameters of Fig 3(A), except the time shift of 5 ms. The overlap |m1| and the real
part of Fourier transform of learning window are shown in B and C. We plot in (D)
the replay frequency ω̃ as a function of the encoded frequency ω when the learning
window shown in (A) is used. The frequency of replay in (D) is measured in units of
τ−1

d , while the encoded frequency is measured in ms−1.

network, using the learning window shown in Fig.3(A) and the Heaviside transfer
function, the order parameter size |m| = cos(ϕ)

π of the retrieval solution is shown
in Fig.3(B) as a function of encoded frequency ω. When multiple frequencies
are encoded into the same network condition (44) should be evaluated to check
stability of encoded patterns. From Fig.3(C) and eq. (44) it is possible to evaluate
which intervals of frequencies ω can be encoded as stable attractors in the same
network.

However a change in the shape of the learning window A(τ) changes sig-
nificantly the Fourier transform Ã(ω), and therefore change significantly the
dynamics. Here we show the case in which the learning window in eq. (45) is
time-shifted on the left of τ0 = 5ms, i.e. τ → τ + τ0. Figure 4 shows the learning
window, and the quantities related to its Fourier transform, i.e. the overlap |m| of
retrieved pattern, the ReÃ(ω), and replay frequency ω̃ versus encoded frequency
ω. We note that, with respect to Figk. 3, in Fig 4 a larger interval of frequency
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A: Encoded pattern C: Encoded pattern with sorted units

B: Replay D: Replay with sorted units

E: Order parameter m1 versus time

Fig. 5. In this numerical simulation, a periodic pattern L1(t) with random phases and
frequency ω1 = 0.4 has been memorized in a network of N=10000 units according to
the learning rule (9) by using the time window A(τ ) shown in Fig. 4 (eq.(45) but with
a time shift of 5ms). The first six units of pattern L1(t) are plotted in (A) as a function
of time. In (B) The evolution of first six units xi(t) in the numerical simulations of
eq. (1) are plotted as a function of time. The numerical integration of equation (1) is
computed with the transfer function F (h) = 1

2 (1 + tanh(βh)) with β = 100. Initial
condition xi(0) = L1

i (0) induces the retrieval (replay) of pattern µ = 1. However since
ω1 = 0.4 gives ϕ1 = 1.02, it’s ω̃1 = − 1.6

τd
negative, and the pattern is replayed in

a reversed order. To see the correspondence between the encoded pattern and the
replayed one, we sorted the units with respect to the phase of encoded pattern φ1

i . In
(C) the encoded pattern shown in (A) is shown with sorted order. In (D) the activity
of the network during replay shown in (B) is shown using the same sort of units used in
(C). Note that the sequence during replay is reversed. (E) The time evolution of order
parameter m1, is plotted as a function of time. The real (red line) and the imaginary
part (dashed blue line) of m1 oscillate in time, in agreement with predictions. Module
(dotted pink line) is constant in time.
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ω gives low ω̃ and therefore large overlap |m|. Moreover in Fig.4(D) we see that
there is a region where ω̃ takes a negative value, and therefore negative replay
frequencies are possible. In the case of negative replay frequencies, the network
replays encoded patterns in the reversed order with respect to time. This is
shown in Fig. 5, showing numerical simulations of the network of eq. (1), when
learning, with the learning window in Fig.4, a periodic pattern with frequency
ω1 = 0.4. Since ω1 = 0.4 gives ϕ1 = 1.02, and therefore ω̃1 = − 1.6

τd
is negative,

this means that the encoded pattern is replayed in a reverse order in time. This
means that the relative phases during replay are opposite with respect to phases
of encoded pattern used during learning. To see the correspondence between the
encoded pattern and the replayed one, we sorted the units with respect to the
phase of encoded pattern φµ

i , so that sorted units shows increasing phases in the
encoded pattern. Using this sorted units the replay shows decreasing phases, i.e.
the sequence is reversed. The frequency and the order at which the phases φi

of the encoded pattern are recalled is related to ϕ. Eq.(25) shows that, when
b = 0 and F (h) = H(h), forward replay occurs when −π

2 < ϕ < 0 and replay
in reversed order when π

2 > ϕ > 0. Therefore, in order to get retrieval of a
phase-coded memory in reversed order with respect to the order experienced
during learning, the learning window and the frequency during learning yield
the Fourier Transform with π

2 > ϕ > 0.

4 Conclusions

We analyzed the possibilities to encode in the network multiple spatio-temporal
oscillatory patterns, with different frequencies, in such a manner that the network
is able to selectively recall one of them, even in total absence of any external
input, depending from the initial state of the network. Each encoded pattern is
a collective oscillation, the frequency of the oscillation is the same for all units of
the network for a given pattern (but may be different from pattern to pattern),
while the phase of the oscillation are randomly chosen in [0, 2π], and therefore
are different for each unit of the network and from pattern to pattern.

We found that
1) Using a STDP-based learning rule (3), the patterns encoded are stable dy-

namical attractors only if their frequencies satisfy some conditions which depend
on the shape of the learning window. Therefore, the shape of the learning win-
dow influences the possibility of coexistence of different frequencies as multiple
stable attractors in the same network. When a pattern is encoded as an unstable
solution, during retrieval the network shows only a transient activation of that
dynamical pattern (see Fig.2). On the contrary when a solution is a stable attrac-
tor of the dynamics, this solution is a spontaneous pattern of activity. This means
that a pattern encoded as a stable solution can emerge and stay active also in to-
tal absence of external input, when the state of the network falls in the basin of
attraction of that pattern. Numerical simulations confirm analytical predictions.

2) During recall, the phases of firing of all units relative to the ongoing rhythm
match the phases of the encoded pattern, while the frequency of the collective
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oscillation is different from the one of the encoded pattern. The new frequency
depend from the shape of the learning window, the frequency of encoded pattern,
and the time constant of the single unit dynamics. It means that the same
pattern can be replayed at a different time-scale, compressed in time or dilated
in time, depending on the value of the Fourier transform of the learning window
at encoding frequency, Ã(ωµ), and on τd.

The computational role and functional implications of the STDP plasticity,
have been explored recently from many points of view (see for example [40,38,39,
51,48,41,20,18,25] and reference therein). In particular in the paper [48] authors
discuss how the gap between synaptic and behavioral timescales can be bridged
with STDP if stimuli to be associated generate sustained responses that decay
slowly appropriately in time. The rule (3) we use in this paper share similarity
with the analitical model of STDP used in [48]. While in our work, rule (3) is used
to make the network to work as associative memory for dynamical attractors,
in the work [48] authors discuss how it can generate connections strength that
vary with time-delay between behavioral signals on the time scale of seconds,
even though STDP is sensitive to correlations between pre- and post-synaptic
activity on time-scale of tens of milliseconds.

Differently from the work [25], where this rule is used to make a network of
coupled excitatory and inhibitory units become resonant to the encoded oscilla-
tory patterns, and relax to the encoded pattern when a corrupted version of the
pattern is presented as input, here (and in [2]) we study conditions under which
the network can encode these patterns as spontaneous patterns of activity, i.e.
patterns which emerges in total absence of external inputs, when the current
state of the network, for any reason, is such to fall in the basin of attraction
of encoded pattern. For example, it may be that an external input forces the
network state to be such that one attractor is recalled, then the activity corre-
sponding to that attractor is spontaneously active and self-sustained, in absence
of external input. In the past years, increasing experimental evidence has been
accumulated as to the significance of spontaneous ongoing network activity in
different brain regions [52, 53, 54]. Our model support spontaneous activities to
be the encoded pattern of collective oscillations, and it allows the existence of
many spontaneous oscillatory patterns in the same network, even with different
frequencies.

In our model the learning rule (3), after encoding an oscillatory pattern with
frequency ωµ and phase φµ

j on unit j, bring to a connectivity shown in eq. (7)
where |aµ|eiϕµ is the Fourier transform of learning window A(τ) at frequency
ωµ, and Ã(0) is zero when there is a balance between potentiation and depres-
sion in the learning window shape. When multiple phases-coded memories, each
memory with a different frequency ωµ and different phases φµ

i on each unit i,
are encoded, then synaptic connections in our framework are given by eq. (9)
The connections in eqs. (7) and (9), written in terms of phase of firing with re-
spect to the ongoing rhythm, share same similarity with learning rule discussed
in a Q-state clock neural network model [42], with learning rules used in the
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phase-oscillators frameworks [43, 13, 44], and with the STDP-based rule used
in [41] and in spiking models [19, 18].

In our framework the frequency at which the phases φµ
i are recalled is related

to ϕµ. Eq.(25) predicts forward replay when −π
2 < ϕµ < 0 and replay in re-

versed order when π
2 > ϕµ > 0. The size of overlap |mµ| by which phases are

replayed also is related to ϕµ (see eq. (28)). Moreover in order to store prop-
erly the phase-coded memory, as stable attractor, |aµ|, ϕµ and ωµ should satisfy
stability conditions (38,40). Under the conditions studied here, different phase-
coded memories, each with a different frequency, can be recalled selectively, at
different frequencies, in forward (−π < ϕµ < 0) or reverse order (π > ϕµ > 0).

Recently, forward replay and reverse replay of spatiotemporal neural activ-
ities has been reported in the various regions in the brain [9, 10, 11, 12]. The
possible relation of the forward replay to the STDP has been pointed out in the
previous study regarding the sharp wave burst in the Hippocampus [18, 19]. In
this study, retrieval of a multiple number of spatiotemporal patterns has suc-
cessfully been shown in spiking neural networks as in the manner similar to the
present study of analog neural networks. These results on learning of multiple
spatiotemporal patterns well explain the experimental result [9], in which not a
single but multiple spatiotemporal patterns have been found to be memorized
in the Hippocampus. Although the present study focuses only on learning of
periodic patterns, the STDP-based learning scheme discussed here is applicable
also to nonperiodic ones such as Poisson patterns [2, 19, 18, 56].

Interestingly reverse replay has been also recently simulated [46] in a model of
the hippocampus with theta phase precession. In that model each unit is repre-
sented by a angular phase [20,55]. While the model [46] address the encoding and
replay (forward and reversed) of only one specific pattern (i.e. the sequential ac-
tivation of overlapping place fields at theta timescale due to phase precession), in
our framework, we address the question of encode and replay multiple indepen-
dent patterns (phase-coded memories), with multiple frequencies. The current
study relates reverse replay to biologically plausible shape of STDP learning win-
dow. However, it still remains unclear if the STDP indeed has a contribution to
occurrence of reverse replay. For example, Leibold et al. have discussed the pos-
sibility that short-term synapse plasticity causes time-compressed reverse replay
of spatiotemporal pattern [57]. More efforts are necessary to reach a conclusion.

In our framework, the areas under the depression and potentiation part of the
STDP learning window should balance, in order to maximize capacity. This bal-
ance between LTP and LTD is needed for the synaptic weights to respond to the
asymmetric rather than the symmetric component of the unsubtracted cross-
correlation. We found in [2] that storage capacity (the maximum of the number
of patterns for successful retrieval) diverge in the thermodynamic limit when the
ratio r of the area under the LTD part of the STDP window to the area under the
LTP part is 1. The upper and lower bounds of r needed to store P patterns can
be computed in our framework as functions of P and ωµ [2]. If tight control is not
maintained on the balance between synaptic potentiation and depression due to
STDP, uncorrelated background firing will have a dominate effect.
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Activity-dependent modification of synaptic strengths due to the proposed
learning rule in eq. (3) is sensitive to correlations between pre- and post-synaptic
firing over timescales of tens of ms when the range of A(τ) is tens of ms. The
window A(τ) is the measure of the strength of synaptic change when there’s a
time delay τ between pre and post-synaptic activity. Writing eq. (3), implicitly
we have assumed that the effects of separate spike pairs due to STDP sum
linearly. However note that nonlinear effects have been observed when both
pre- and post-synaptic neurons fire simultaneously at more then 40 Hz [49, 50],
therefore our model holds only in the case of lower firing rates, and in those
case where linear summation is a good approximation. Also, we do not take into
account here effects of saturation.

Finally, using learning rule in (3), we have both positive and negative con-
nections (see also eq. (9)). Clearly, real neurons are or excitatory or inhibitory,
and therefore the sign of Jij should be positive if the pre-synaptic unit j is exci-
tatory, and negative otherwise. As a remedy, one may use only excitatory units
(i.e. only the non-negative connections are allowed) and add a global inhibition.
Ongoing study shows that, even with only excitatory units, and a proper value
of global inhibition, the network can encode and replay multiple oscillatory pat-
terns. Indeed, in numerical simulations, we have found that, with all excitatory
units, adding a proper value of global inhibition leads to results like those found
earlier, where negative weights were permitted. We also remark that negative
weights can also be simply implemented by inhibitory interneurons with very
short membrane time constants.
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Abstract. During slow-wave sleep, cortical neurons oscillate between up and 
down states. Using a computational model of cortical neurons with realistic 
synaptic transmission, we determined that reverberation of activity in a small 
network of about 40 pyramidal cells could account for the properties of up 
states in vivo. We found that experimentally accessible quantities such as mem-
brane potential fluctuations, firing rates and up state durations could be used as 
indicators of the size of the network undergoing the up state. We also show that 
the H-current, together with feed-forward inhibition can act as a gating mecha-
nism for up state initiation.  

1   Introduction 

Slow wave sleep (SWS) is an active brain state in which memory consolidation and 
replay of neural activity patterns occur [1]. This stage of sleep is characterized by a 
slow (~0.5 Hz) oscillation in the cortical electroencephalogram (EEG). At the single 
cell level, cortical neurons switch between two states: an ‘up state,’ during which the 
membrane potential of the neurons is higher and the neurons spike frequently, and a 
‘down state’ when the neurons are essentially silent [2, 3]. Although this oscillation 
can be highly synchronous between distant cortical regions (for example between the 
prefrontal and entorhinal cortex [4]), up states are also observed within cortical slices. 
In vitro, local glutamate application can initiate an up state in local neurons, causing a 
wave of up state onsets to spread across the slice [5]. In other slice preparations up 
states are more sporadic, but show repeating and ordered sequences of onsets [6]. 
Ordered up state onsets have also been observed in vivo [7]. Altogether, these data 
suggest that up states are local network phenomena that can be initiated by surround-
ing activity. 

Up states recorded from different cortical regions do not have the same properties. 
For example, the firing rates of neurons may stay constant or decrease during the 
duration of the up state, depending on the cortical region under consideration (Andrea 
Hasenstaub, personal communication). Also, a precise mix of excitation and inhibi-
tion is necessary for the generation of up states, but the data on whether that mix in-
cludes more inhibition, excitation or a balanced amount is still unclear. Three groups 
have reported different inhibition to excitation ratios: 1:1 [8], 1:10 [9], or 2:1 [10]. 
The discrepancies can probably be attributed to differences in the cortical regions 
recorded, differences in the animal’s species and differences in the induction and 
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depth of sleep (anesthesia or natural sleep). Because data from different preparations 
are so varied, it is likely that different network properties in different cortical regions 
lead to different properties of up states.  We hypothesize here that one of the major 
differences leading to differences in up states is the size of the network being  
recruited.  

How up states are generated in vivo is still unknown, but it is thought that a pulse 
of synchronous excitation from the hippocampus [11], thalamus [12] or other cortical 
neurons may be key. While network activity is certainly at play, intrinsic membrane 
properties may synergistically contribute as well [13]. We hypothesized that the H-
current may play a major role in the initiation of up states, because it is a depolarizing 
current that activates during rapid changes in membrane potential (such as those 
caused by synchronous inputs) at below-threshold potentials. It has been shown to be 
involved in generating some types of rhythmic activity [14]. Additionally, this current 
is modulated by many types of neurotransmitters, such as those activated during 
SWS. For example, cortistatin, a peptide expressed in the cortex and hippocampus, 
increases the H-current and enhances slow wave sleep [15]. Also, dopamine enhances 
the amplitude and shifts the activation curve of this current [16]. Thus, we hypothe-
sized that the H-current will enhance the likelihood of up state initiation.  

2   Methods 

We used the simulator NEURON to create a network model of biophysical neurons. 
Two types of neurons were simulated: excitatory, pyramidal-like neurons, and inhibi-
tory GABAergic neurons. The excitatory neurons had a single somatic compartment, 
and a dendrite comprised of ten compartments. Passive leak currents adjusted to give 
an input resistance of 90 MΩ, were inserted in all compartments. Voltage-gated so-
dium and potassium currents were added to the soma [17] and adjusted to give an 
action potential generation threshold of -53mV. To control the bursting properties of 
pyramidal neurons, a calcium-activated potassium channel [18] and a calcium chan-
nel, pump and buffering [19] were added to the somatic compartment. In some simu-
lations (see results, Fig. 3), an H-current was added to all compartments, comparable 
with experimental data [20]. Inhibitory neurons consisted of a single somatic com-
partment, and included voltage-gated sodium and potassium currents and passive leak 
currents adjusted to give an input resistance of 150 MΩ.  

An Ornstein-Uhlenbeck background synaptic noise source [21] was added to the 
soma of each neuron to mimic the inputs from neurons outside of the simulated net-
work, and was adjusted so that membrane potential fluctuations resembled those dur-
ing a down state in vivo. Pyramidal neurons were connected to each other with 
AMPA/NMDA synapses showing facilitation and depression. These synapses were 
positioned onto a random dendritic compartment. There were approximately four 
times fewer inhibitory neurons than pyramidal neurons. Each inhibitory neuron  
received inputs from all the pyramidal neurons and output onto the somatic compart-
ment of each pyramidal neuron to create shunting of the currents from the dendrite. 
These GABAergic synapses were deterministic [22]. Interneurons were not  
interconnected.  
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3   Results 

A network of 26 pyramidal neurons and 6 inhibitory neurons was created as specified 
above. To generate an up state, a short (150ms) current pulse was given simultane-
ously to a few (~30%) model pyramidal neurons to mimic excitatory inputs from the 
thalamus, another cortical region, or the hippocampus. The conductances of the syn-
aptic inputs were adjusted to obtain up state firing rates and pyramidal neuron mem-
brane potential (Vm) averages and fluctuations (standard deviation) similar to those 
measured in vivo (Fig. 1 and Table 1). The Vm fluctuations were the only statistic that 
did not fit to measured data levels if this network were to generate up states, and so 
conductances were adjusted to make it as low as possible. The resulting up states 
terminated spontaneously after 500-2000 ms. Firing rates towards the end of the up 
state were constant until there was an abrupt end, indicating that activity did not just 
peter out.  

Table 1. Comparison of up state statistics in model with in vivo data [4], [7], [8], [9], [10] 

 26 excitatory neuron model In vivo data 
Excitatory neuron firing rates 10.4 +/-1.3 Hz 8-15 Hz 
Inhibitory neuron firing rates 34.5 +/-5.3 Hz 15-30 Hz 
Average up state membrane potential  -59.7 +/-1.9 mV -50 to -60 mV 
Up state membrane potential fluctuations  4.69 +/- 0.52 mV 2-3 mV 
Average down state membrane potential  -68.3 +/- 0.5 mV -65 to -75 mV 
Down state membrane potential fluctuations 1.03 +/- 0.20 mV 0.6-2 mV 
Duration of up state 1.168 +/- 0.470 s 0.4 – 1.6 s 
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Fig. 1. Membrane potentials of three neurons (two pyramidal and one inhibitory) during an 
example up state generated by the model (right) compared to in vivo recordings of regular 
spiking and fast spiking neurons during the slow oscillation [8] (left) 

To investigate how network size affected up state statistics, it was varied while 
keeping the proportion of excitatory and inhibitory neurons constant. Synaptic con-
ductances were scaled proportionately to keep the overall synaptic inputs to each 
neuron approximately constant. This kept the average Vm of pyramidal neurons dur-
ing up states constant (Fig. 2A), but changed the Vm fluctuations (Fig. 2B), which 
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were mainly determined by the conductances of single synaptic events. The Vm fluc-
tuations reached the measured in vivo level at a network size of 39 excitatory neurons, 
and appeared to asymptote within the in vivo measured range. The firing rates of both 
excitatory and inhibitory neurons during up states were larger in small networks (Fig. 
2C). This may be due to the larger size of each individual synaptic conductance, 
which may allow the neuron to cross threshold more often even though the average 
input is approximately the same. The average Vm of inhibitory neurons, unlike that of 
pyramidal neurons, increased as network size decreased (Fig. 2A). This increase may 
be due to the slightly higher pyramidal neuron firing rates in the smaller networks, 
which cause a non-balanced increase in the number of excitatory inputs to the inhibi-
tory neurons. Another statistic that changed with network size was up state duration, 
which increased for larger networks (Fig. 2D). These results show that a relatively 
small number of cells (39 pyramidal neurons, and 9 interneurons) can be recruited to 
generate and sustain up states comparable to those observed in vivo. Smaller networks 
required larger individual synaptic events than those observed in vivo to generate an 
up state.   

 

Fig. 2. The effects of changing network size on up state membrane potential (A), fluctuations 
(B),  and firing rates (C) of both types of neurons in the network, and duration of the up state 
(D). X-axis is the number of pyramidal (excitatory) neurons in the network.  

To test our hypothesis that intrinsic currents such as the H-current could contribute 
to the initiation of up states, we added this current to the pyramidal neurons in a 30-
pyramidal neuron network. The H-current made up states more likely to be initiated 
by simultaneous excitatory inputs (Fig. 3, solid line compared to dotted line). Because 
the H-current activates at hyperpolarized membrane potentials, we reasoned that an 
inhibitory volley prior to excitatory inputs could further facilitate the elicitation of the 
up state. Such inhibition prior to excitation indeed enhanced the activation of the H-
current and increased the probability of generating an up state (Fig. 3, dashed line). 
These differences in up state initiation were even bigger in a smaller network, where 
fewer simultaneously active neurons were needed to activate an up state (data not 
shown). The H-current did not have an effect on other properties of up states, such as 
their firing rates or duration. 
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Fig. 3. The effects of the H-current in pyramidal neurons (solid and dashed lines), and an in-
hibitory volley prior to excitatory input (dashed and dash-dotted lines) on the probability of up 
state initiation. Dotted line is the control network, with no H-current or inhibitory volley.  

4   Conclusions 

Our model indicates that up states can be generated in a small network (as little as 40 
neurons, if the network is fully connected) by the brief activation of a subset of those 
neurons. Activity reverberates in the network and spontaneously and abruptly shuts 
off, in the time scale seen in vivo. Also as seen in vivo, particular ratios of excitatory 
and inhibitory conductances were conducive to initiating up states. 

In our model Vm fluctuation amplitudes, firing rates during the up state and up state 
duration all varied monotonically with network size. These experimentally measur-
able quantities can therefore be used as indicators of the size of the network (assum-
ing full connectivity) that is responsible for an up state in preparation in which  
network size is not directly experimentally accessible. Thus, models such as this one 
can in principle be used to distinguish between different types of up states in different 
preparations and help determine the differences in their underlying mechanisms.  

We further showed that adding an H-current increased the probability of generating 
an up state with the same number of synchronous inputs. Thus, the H-current may be 
one of the factors that enhance the initiation of up states. Feed-forward inhibition or 
hyperpolarization just prior to synchronous excitatory inputs made the likelihood of 
up state generation even greater in the presence of the H-current. This result suggests 
that feed-forward inhibition just prior to synchronous excitatory inputs could increase 
the likelihood of up state generation, and act as a gating mechanism. The neuromodu-
lation of the H-current during SWS may be one of the factors that allows and/or en-
hances the initiation and gating of up states.  
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Abstract. The mammalian olfactory system shows many types of sensory and 
perceptual processing accompanied by oscillations at the level of the local field 
potential, and much is already known about the cellular and synaptic origins of 
these markers of coherent population activity. Complex, but chemotopic input 
patterns describe the qualitative similarity of odors, but animals can discrimi-
nate even very similar odorants. Coherent population activity signified by oscil-
lations may assist the animals in discrimination of closely related odors.  
Manipulations to olfactory bulb centrifugal input and GABAergic circuitry can 
alter the degree of gamma (40-100 Hz) oscillatory coupling within the olfactory 
bulb, affecting animals’ ability to discriminate highly overlapping odors. The 
demands of an odor discrimination can also enhance gamma oscillations, but 
this may depend on the cognitive demands of the task, with some tasks spread-
ing the processing over many brain regions, accompanied by beta (15-30 Hz) 
instead of gamma oscillations.   

Keywords: oscillation, gamma, beta, olfactory bulb, piriform cortex, hippo-
campus, synchrony, behavior. 

1   Introduction 

The textbook picture of sensory systems is a hierarchical one in which objective sen-
sory input is passed to a primary sensory area, such as the thalamus or even primary 
sensory cortex, where some “preprocessing” happens.  The processed signal is then 
transferred to the next cortical area where different streams of sensory information 
may be combined.  At some level a “meaning” area adds to the signal, and the output 
then passes on to motor areas to produce a behavioral output.  While this may seem an 
oversimplification to most neurophysiologists, this is the general framework that we 
teach our students and which biases our interpretations. 

When we examine sensory processing in waking and intact animals we find that 
the sensory stimulus that arrives even at the first processing stage in the brain is al-
ready not objective.  An individual seeks information in the environment with body 
movements and sensor array changes that influence what is assumed to be objective 
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sensory data.  As a rat sniffs an odor the air in the nasal passages changes temperature 
and humidity.  Sniffing dynamics may also direct the stimulus to optimal portions of 
the sensory epithelium (Schoenfeld and Cleland 2005), and head and body move-
ments help an animal detect and locate an odor.  Similar processes are at play in atten-
tional behavior associated with any sensory stimulus.  There are central mechanisms 
that have been discovered to accommodate for these search behaviors, such as the 
optokinetic effect in eye movements, but we still know relatively little about the dy-
namical interaction between brains and their environments. 

Within the brain anatomical connections between sensory processing areas show 
dense bidirectional connectivity, and every sensory system shows strong effects of 
behavioral and arousal states that change the ways in which even very low level cen-
tral neurons respond to stimulation. The olfactory system is no exception in this re-
spect (Kay and Sherman 2007). This system also exhibits interesting dynamical  
behavior and has been studied from this perspective for many decades. This chapter 
will describe olfactory system behavioral physiology from a dynamical perspective, 
focusing on context-associated functional state and connectivity changes as exhibited 
primarily by neural oscillations. 

2   Olfactory System Architecture 

2.1   The Distributed Parts of the Olfactory System 

The mammalian olfactory system is typically considered to be the collection of areas 
that receive monosynaptic input from the first cortical structure, the olfactory bulb1.  
This includes the anterior olfactory nucleus, the piriform cortex and portions of the 
entorhinal cortex and amygdala.  However, bidirectional anatomical connections 
connect most parts of this system and connect the olfactory system with other sys-
tems, in particular the hippocampal system (Fig. 1). 

Cortical and subcortical areas that project directly to the olfactory bulb include all 
parts of the olfactory system, plus areas such as the temporal pole of the hippocampus 
(van Groen and Wyss 1990), the septum, and the amygdala.  In addition, almost every 
major neuromodulatory system sends output to the olfactory bulb; these include his-
taminergic input from the hypothalamus, serotonergic input from the Raphe nuclei, 
noradrenergic input from the locus coeruleus, and cholinergic input from the basal 
forebrain.  It is commonly believed that olfactory bulb dopamine is entirely intrinsic, 
but in at least one species (sheep) there is a projection from the ventral tegmentum 
(Levy et al. 1999).  Thus, the olfactory bulb receives perhaps more input from the 
brain than it does from the sensory receptors in the nose.  All of this evidence points 
out that the hierarchical view of sensory processing is too simplistic, even at the  
anatomical level. 

 

                                                           
1 Two reference works that give an excellent summary of olfactory system connectivity are 

Shepherd GM, and Greer CA. Olfactory bulb. In: The Synaptic Organization of the Brain, 
edited by Shepherd G. New York: Oxford University Press, 2003, p. 719. and Shipley MT, 
Ennis M, and Puche A. Olfactory System. In: The Rat Nervous System, edited by Paxinos G. 
San Diego: Academic Press, 2004. 
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Fig. 1. The major bidirectional connections of the mammalian olfactory system. This figure 
illustrates that the system does not have a strictly feedforward architecture. The schematic 
represents brain regions and does not differentiate the different intraregional cell populations 
that form these connections. Not all bidirectional connections are shown. 

2.2   Olfactory Bulb Input 

The number of different functional olfactory receptor genes far exceeds the number of 
receptor types in other sensory systems, with functional genes numbering on the order 
of 1,000 in rodents and about 360 in humans (Buck and Axel 1991; Gilad et al. 2004; 
Glusman et al. 2001; Zhang and Firestein 2002). Sensory neurons in the nasal epithe-
lium each express one type of olfactory receptor and project in an ordered fashion to 
the olfactory bulb. All of the sensory neurons expressing a given olfactory receptor 
type project their axons to a pair of identified glomeruli in the ipsilateral olfactory 
bulb (Fig 2) (Mombaerts et al. 1996). This makes the olfactory bulb input receptor-
topic, although the logic of this ordering is not well understood.  This ordered input 
translates to a relatively high-dimensional chemotopy. However, there is also no sim-
ple logic to the chemotopy, since individual receptors expressed on sensory receptor 
neurons are activated by parts of molecules, with optimal activation by a few mono-
molecular odorants and lower levels of activation by other similar odorants. Since all 
molecules have multiple molecular features, a given odorant activates multiple recep-
tor types. Thus, many odorants activate an individual glomerulus, and many glomeruli 
are activated by a single odorant. There is some stereotypy in monomolecular glome-
rular activation maps, but these maps appear to be very high dimensional (Leon and 
Johnson 2003). Furthermore, we have very little information regarding to which mo-
lecular features a given receptor may be most sensitive. To date, only a handful of 
receptors have been analyzed for optimal ligands, and only one receptor has been 
systematically analyzed (Araneda et al. 2000). 

2.3   Basic Circuitry of the Olfactory Bulb 

The olfactory bulb is a three layered paleocortical structure.  The input layer is the 
glomerular layer, which contains principal neuron (mitral cell2) dendrites, glial cells 
and small juxtaglomerular cells which modulate sensory input and mitral cell activity 
(Fig 2). Juxtaglomerular cells are of many different types, but the most numerous are 
GABAergic, including a class of cells co-expressing GABA and dopamine. Sensory 
 

                                                           
2 The principal neurons are actually mitral and tufted cells, which will be referred to as a group, 

mitral cells, in this article. 
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Fig. 2. Detailed schematic of the mammalian olfactory bulb circuit. Olfactory receptor neurons 
(ORNs) expressing the same odorant receptors send their axons to a common glomerulus in the 
olfactory bulb, where they synapse onto several types of cells. Shown are centrifugal GABA 
and glutamate projections synapsing onto lateral dendrites of granule cells, as discussed in the 
text. These centrifugal projections come from many brain areas and project specifically to the 
granular cell (GRL) and glomerular layers (GL). MCL: mitral cell layer.  Dashed line indicates 
olfactory bulb boundary. Reprinted with permission from Kay LM, and Stopfer M. Seminars in 
Cell & Developmental Biology 17: 433-442, 2006. 

neuron axons contact mitral cell dendrites directly in the glomeruli, and mitral cells 
typically have a single apical dendritic tuft in a single glomerulus, so they receive 
direct sensory input from only a single receptor type. (This is the only sensory system 
in which sensory neurons project directly to cortex, and it is one way in which sub-
stances can pass the blood-brain barrier.) Deeper layers include the mitral cell body 
layer about 700 µm below the pial surface, and deep to that layer is the relatively 
broad granule cell layer. 

Mitral cells are glutamatergic and form reciprocal dendrodendritic synapses with 
GABAergic granule cells via their long lateral dendrites in a fiber-rich region between 
the glomeruli and the mitral cell layer, called the external plexiform layer. This syn-
apse is functionally important, as it supports the gamma oscillations that are so 
prominent in the olfactory bulb (see Section 5.1).  Because granule cells can release 
glutamate in a graded fashion in response to graded depolarization by mitral cells, 
inhibition of mitral cells can be graded, without the assistance of granule cell action 



 Dynamical Architecture of the Mammalian Olfactory System 71 

potentials, or can be pulsatile when granule cells do fire.  Slice studies show that 
physiological levels of Mg2+ are high enough that normal activation of granule cells 
by mitral cells at the dendrodendritic synapse is not enough to make the cell fire but 
could produce a graded release of GABA (Aroniadou-Anderjaska et al. 1999).    

Centrifugal input to the olfactory bulb comes in primarily onto granule cells, mak-
ing contact just below the mitral cell layer in the internal plexiform layer and 
throughout the granule cell layer. Glutamatergic input predominates from other corti-
cal areas and activates granule cells on their basal dendrites. Because of the density of 
this input onto the granule cell population, it can provide strong modulation of olfac-
tory bulb inhibition. 

2.4   Connections between the Olfactory Bulb and Other Areas 

Mitral cells project their long axons onto principal neurons in other parts of the olfac-
tory system (Fig 2). Most prominent are the projections to the anterior olfactory nu-
cleus and the anterior piriform cortex. These two areas also project more fibers back 
to the olfactory bulb than other olfactory structures. Other significant projections are 
to the olfactory tubercle, posterior piriform cortex, taenia tecta, indusium grisium, 
entorhinal cortex, amygdala, and the insula (Shipley and Adamek 1984). Projections 
to posterior piriform cortex are sparser than to the anterior part. Projections to the 
entorhinal cortex are onto the layer 2 stellate cells that project directly into the dentate 
gyrus of the hippocampus. This makes the pathway to the hippocampus from the 
olfactory bulb disynaptic through the entorhinal cortex. Feedback projections to the 
olfactory bulb from these areas are smaller than those from the anterior piriform and 
anterior olfactory nucleus. The medial entorhinal cortex receives olfactory output 
from the hippocampus, and this area also has projections back to the olfactory bulb 
granule cell layer (Biella and De Curtis 2000; Insausti et al. 1997). A more direct 
hippocampal projection to the olfactory bulb arises from the temporal pole of the 
hippocampus, where a subset of excitatory cells projects directly from CA1 to the 
granule cell layer of the olfactory bulb (Gulyas et al. 1998; van Groen and Wyss 
1990). Many other areas project to the olfactory bulb, including the amygdala, taenia 
tecta, septum, and substantia nigra (Levy et al. 1999). 

3   Olfactory System Electrophysiology 

Olfactory system activity is studied at all levels of analysis, from the genetic basis of 
receptor projections to the olfactory bulb, to fMRI studies of meaning related odor 
processing. This review will focus on extracellular methods in anesthetized and wak-
ing animals and the various types of information they convey. 

3.1   Signals and Analysis Tools 

The local field potential (LFP) is generally considered to be the summed synaptic 
activity in a local population of neurons. This often gives a rough estimate of the 
summed spiking activity of local cells, but this is not always the case. Many cells do 
not fire as frequently as they receive substantial input. In the case of the olfactory 
bulb granule cells, this is significant. Thus, in the olfactory bulb, the LFP is a measure 
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of the coherent activity of the local population, and as we will see below, this is a 
good estimate of the timing of mitral cell spikes. The scale of the measure is often 
referred to as “mesoscopic” to represent the middle level of analysis between single 
neurons and whole brain regions. The LFP is also a rough measure of what other 
brain regions receive from a given area, since the coherent activity is what survives 
down a pathway consisting of many axons with a distribution of conduction delays. 

Analysis of LFP signals from single leads can be done with a variety of methods.  
Here we will concentrate on results from standard Fourier analysis. Other methods 
include wavelet and multitaper approaches. Both of these methods allow analysis of 
finer temporal structure in individual events, but all methods have weaknesses and 
strengths and should be chosen dependent on the question and the data. Coherence 
measures are often used to estimate cooperativity in a given frequency band (Chabaud 
et al. 1999; Fontanini and Bower 2005; Kay 2005; Kay and Freeman 1998; Lowry 
and Kay 2007; Martin et al. 2007). Phase estimates from these signals can be noisy 
and difficult to interpret and are only valid when coherence estimates are rather large.  
Furthermore, it is important to understand the source of the signals involved, because 
the absolute phase of a signal varies dependent on the position in the cortical tissue 
relative to the dipole field of the synaptic layer giving rise to the signal (Ferreyra 
Moyano et al. 1985; Freeman 1959; Martinez and Freeman 1984). To address ques-
tions of directionality in flow of these signals, some researchers are now using causal 
analysis methods (Bernasconi and Konig 1999; Brovelli et al. 2004; Seth 2005).  
These methods show great promise, particularly in a system with dense bidirectional 
connectivity and multiple generators of various rhythms. 

 

 

Fig. 3. Current source density profile from the olfactory bulb.  a) Shock stimulus response in 
the olfactory bulb of an anesthetized rat (100 msec are shown).  A shock to the lateral olfactory 
tract (LOT) stimulates the mitral cells antidromically and induces an oscillatory evoked poten-
tial with alternating current sinks and sources in the external plexiform layer.  A shock stimulus 
to the primary olfactory nerve (PON) produces a similar effect, but the event begins in the more 
superficial glomerular layer and then activates the deeper layers of the bulb.  b) Current source 
density profile in a waking rat exploring the cage.  Alternating current source-sink pairs occur 
in the external plexiform layer and the granule cell layer.  A deep source of lower frequency 
gamma 2 oscillation is evident in this event (Kay 2003).  One second of data are shown. 
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Sources of oscillations can be investigated using several different methods.  In 
waking animals a powerful tool for determining the synaptic sources of events associ-
ated with specific behavioral states is current source density (CSD). This method is a 
simple spatial derivative across the voltage signals recorded at successive depths 
perpendicular to the cortical layers. The data give a picture of the sources and sinks of 
current in the cortical tissue and are often displayed as color-coded spatiotemporal 
plots (Fig. 3a). An excellent reference paper which addresses the physics of estimat-
ing current and its sources in cortical tissue was published in 1985 (Mitzdorf 1985).  
This method has been used with some success in anesthetized animals (Martinez and 
Freeman 1984; Neville and Haberly 2003), but since many of the oscillations occur 
only in specific behavioral states, use of chronically implanted probes in waking ani-
mals is crucial to describing the sources of oscillations (Fig. 3b). CSD analysis has 
been used successfully in the hippocampus of waking rats to delineate the synaptic 
sources of some types of oscillations (Bragin et al. 1995; Kandel and Buzsaki 1997). 

4   Coding Properties of the Input System 

The anatomical structure of the input to the olfactory bulb predicts perceptual proper-
ties and neuron responsiveness to some extent.  However, these properties depend in 
large part on an animal’s behavioral state and prior experience with the stimuli. 

The relatively structured input to the olfactory bulb provides some predictions 
about perceptual qualities of odorants. Anatomical projections from identified recep-
tor types and glomerular activation maps are relatively stereotyped across individual 
animals, and this allows examination of activation pattern overlap for various odor-
ants. Imaging studies show that odorants that are chemically similar activate overlap-
ping regions of the glomerular sheet, while those that are dissimilar activate less  
overlapping regions (Grossman et al. in press; Johnson et al. 2004; Rubin and Katz 
1999; Xu et al. 2003). If glomerular activation patterns represent a spatial code at the 
input level, then those odorants that have more overlapping patterns should smell 
more similar than those with less overlap, and mitral cells should respond to odorants 
similar to their “best” odorant. 

4.1   Psychophysics 

Psychophysical studies address the perceptual similarity of monomolecular odorants 
by several methods, and all of them rely on generalization of an odorant response to 
another test odorant using habituation or associative conditioning. An animal is 
trained to a single odorant, and probe odorants are used to test generalization of the 
learned response (Cleland et al. 2002). These tests verify that monomolecular odor-
ants with larger overlap show more perceptual similarity than those with less overlap 
(Linster et al. 2001) (Fig. 5). 

The above examples rely on generalization across a single dimension (e.g., chain 
length) for monomolecular stimuli. In reality, all natural odorants are blends or mix-
tures of many monomolecular odorants, and this makes studying them much more 
complicated. Even binary mixtures can have complex perceptual qualities, which 
have been roughly divided into two types.  Elemental qualities are those in which the 
 



74 L.M. Kay 

 

Fig. 4. Theta, beta and gamma oscillations from the olfactory bulb in waking rats. Each 
figure shows from top to bottom: raw data (1-475 Hz), beta band (15-35 Hz), gamma band (35-
115 Hz), and theta band (1-12 Hz). 1.5 seconds of data are shown in each plot, both from the 
same rat in the same recording session. a) high amplitude beta band oscillation produced in 
response to odor sensitization.  EP- sensory evoked potential; β- approximate beginning of beta 
oscillation.  Note that the beta oscillation is preceded by a brief gamma frequency burst.  b) 
gamma oscillations (marked by γ) associated with the transition from inhalation to exhalation 
during exploratory behavior. θ- marks respiratory wave in the theta band (inhalation is up).  
Note the relative absence of beta band activity during this episode. 

 

 

Fig. 5. Odor generalization along the dimension of carbon chain length.  Mice were trained 
to respond by digging for an associated reward to a given aliphatic aldehyde on each day (ran-
domly chosen ‘target’) over the course of ten trials.  Digging times were measured in response 
to randomly ordered odorants in the test set, including the complete series of aldehydes (C3 – 
C10) and an unrelated odorant (cineole- cin).  Digging times are presented as normalized  
Z-scores.  Most mammals will generalize the association to the odorants nearest the trained 
odorant.  The asymmetry in response is due to asymmetry in effective concentration due to 
differences in volatility across the odor set.  There is a significant increase in response over the 
unrelated control (cin) for the trained aldehyde and the aldehyde one carbon longer (p < 0.01).  
There is also a significant difference between these two (p < 0.01). 
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binary mixture smells like the two components; configural (or synthetic) qualities are 
those in which the binary mixture smells like something different from the compo-
nents. Most mixtures fall somewhere in between these two extremes, with one odor-
ant overshadowing the other to greater or lesser extent (Kay et al. 2005). Other factors 
that may play a role are the physical properties of individual odorants and odorant 
concentrations (Kay et al. 2005; McNamara et al. 2007).  

The generalization studies described above address the question “is the odorant 
you smell now, similar to the one which you smelled a few minutes ago?” Olfactory 
systems can do much more than find similarities; they are very good at finding differ-
ences. To see how the olfactory system finds differences, we turn to physiology. 

4.2   Physiology 

Relatively few studies have examined firing properties of olfactory bulb mitral cells 
in waking animals.  This is because of the difficulty of isolating individual mitral cells 
due to their high background firing rates, packing density, and the very thin mitral cell 
layer. In waking rats and mice, most mitral cells show a significant modulation in 
firing rate associated with the respiratory cycle in which a burst of a few spikes is 
evoked upon inhalation (Bhalla and Bower 1997; Kay and Laurent 1999; Pager 1985).  
However, this is primarily during respiratory rates of less than 4 Hz. When rats transi-
tion to investigatory sniffing behavior, most mitral cells lose respiratory coupling.  
These two states are referred to as burst and tonic modes, representing inattentive and 
attentive states, respectively, by analogy with sensory thalamus neurons (Kay and 
Sherman 2007). 

Mitral cells can respond to odor stimulation with an increase or decrease in firing 
rate in both anesthetized and waking animals (Bhalla and Bower 1997; Fletcher and 
Wilson 2003; Kay and Laurent 1999; Rinberg et al. 2006a).  These neurons can also 
show changes in the temporal structure of firing relative to the LFP respiratory (theta) 
oscillation (Bhalla and Bower 1997; Pager 1983).  In anesthetized rats, mice and rab-
bits, mitral cells show responses that suggest that they respond specifically to the 
chemotopic input, with nearby mitral cells responding to chemically similar odorants 
(Imamura et al. 1992; Katoh et al. 1993; Uchida et al. 2000).  However, there is some 
dispute as to the generality of this receptive field response (Motokizawa 1996). 

In waking rats and mice, the strongest modulation of firing rate is associated not 
with odor stimulation but rather the animal’s behavioral state (waiting, sniffing, walk-
ing, etc.) (Fig. 6) (Kay and Laurent 1999; Rinberg et al. 2006a). These behavior-
associated firing rate modulation patterns are specific to an individual neuron, are 
stable within a recording session and are similar across neurons recorded on the same 
electrode. Odor specificity, on the other hand, depends on the reward association of a 
particular odor.  When the odor association is changed (e.g., from a positive (sucrose) 
to a negative (bitter taste) association) the odor selectivity of the neuron also changes 
(Kay and Laurent 1999). Even in anesthetized animals, a mitral cells’ receptive field 
response can be altered by ‘experience’ (prolonged exposure to an odorant within the 
original receptive field) as has been shown for other sensory systems (Fletcher and 
Wilson 2003). 
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Fig. 6. Mitral cell responses are modulated by behavior. Mitral cell firing was recorded in a 
rat performing an odor association task: illumination of a house light signaled the opening of a 
door 1 second later.  Behind the door was an odorant solution, which was either sweet or bitter.  
a) unit rasters and mitral cell firing histogram when only water and sucrose were present, with 
no additional odor exposure. Shading on histogram indicates time periods where firing was 
significantly different from the first 1 second of the trials. The horizontal line is the average 
firing rate before the onset of behavioral trials. Horizontal bars marked “light” and “door” 
signify the amount of time that the light was on and that the door was open. The bar marked 
“drink” shows the average onset and offset of the drinking response. b) the same neuron during 
subsequent odor trials. Top panel: both odors (trials randomly interleaved) were associated with 
a sweet solution. Bottom panel: one odor associated with the sweet solution and the other with 
a bitter solution. The rat ceases drinking the bitter solution in most trials (or drinks significantly 
later) after just a few learning trials. Note that the difference in firing rate histograms is re-
stricted to the period in which the behavior is different. Odor selectivity responses (not shown) 
constitute a small but significant modulation on top of the behavioral modulation in about 10% 
of the neurons recorded.  c) three simultaneously recorded cells that show similar background 
firing rates but different behavioral modulation patterns. (compiled and reprinted with permis-
sion from (Kay and Laurent 1999)). 

5   Modulating the Input System 

Olfactory bulb activity is strongly characterized by oscillations of the LFP, as de-
scribed in section 3. The theta/respiratory oscillation is the most obvious and repre-
sents what the olfactory bulb sees of the inhalation/exhalation cycle; this also gives 
the neurophysiologist a tool by which to track gross olfactory behavior (sniffing rate 
and depth) in the LFP signal (see Fig. 4 for examples). 

Initiating at the peak of inhalation is the olfactory bulb gamma oscillation, which is 
centered at about 70Hz in rats but can be as low as 40 Hz in cats and other larger 
mammals. This oscillation has been the focus of research in many laboratories since 
its discovery in the 1940s (Adrian 1942). Walter J. Freeman was the first to show that 
the gamma oscillation may play a functional role in perceptual processing. Freeman 
and colleagues recorded from arrays of 64 electrodes on the surface of the rabbit ol-
factory bulb coupled with conditioning and odor associations (Diprisco and Freeman 
1985; Freeman and Schneider 1982).  Several major findings resulted from these 
studies: 1) during odor sniffing, the frequency spectrum was dominated by power in 
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the gamma band, except for the low frequency respiratory rhythm; 2) the waveform of 
the LFP was the same on all recording leads, as measured by RMS amplitude, or PCA 
or FFT decomposition; 3) the spatial pattern of amplitude of this common waveform 
was dependent on odor association, not on the odorant itself; 4) all spatial patterns 
associated with baseline and odor conditions changed when the association of any 
odor was changed. These last two results were reflected in single unit recordings more 
than a decade later (Kay and Laurent 1999). 

5.1   Gamma Oscillation Circuit 

Within an inhalation a given mitral cell may fire only 2 or 3 spikes, while the gamma 
oscillation itself may show 6 or more cycles. Thus, it is clear that the gamma oscilla-
tion in the LFP does not represent periodic firing of single neurons but rather is a 
population effect. However, the gamma oscillation is a very good indicator of how 
well the local mitral cells participate in this emergent population “synchrony” with 
the LFP. The gamma oscillation of the LFP has been shown to be a measure of the 
probability that a given mitral cell will fire during a gamma burst, with the phase of 
mitral cell firing being 90 degrees before the peak negativity of the gamma oscillation 
as measured at the pial surface (Eeckman and Freeman 1990).  Because the LFP is the 
summed extracellular field from the neighboring neurons, as the firing of mitral cells 
near the recording electrode becomes more precise (closer to the -90 degree mark) the 
gamma oscillation should become larger. 

The circuit that supports the gamma oscillation is the dendrodendritic synapse be-
tween mitral and granule cells (Fig 7). A similar effect is seen in piriform cortex 
(Freeman 1968). The reciprocal negative feedback circuit produces a cycle of excita-
tion of granule cells by mitral cells, inhibition of mitral cells by granule cells, disexci-
tation of the granule cells, and finally disinhibition of the mitral cells. A similar  
sequence of events is seen with electrical stimulation of the olfactory tract, which 
produces an oscillatory evoked potential in both the olfactory bulb and piriform cor-
tex. This effect was the subject of two early computational models (Freeman 1964; 
Rall and Shepherd 1968). Since both neurons participate in this event, both show 
strong coupling with the oscillation, but granule cells produce a more robust extracel-
lular field, due to their parallel and bipolar geometry. 

Current source density is a useful tool for finding the synaptic origins of oscillatory 
events in intact animals.  By computing a spatial derivative across leads (or successively 
deeper penetrations) evenly arrayed perpendicular to the cell layers in a cortical structure, 
the sources and sinks of current flow can be estimated. Current source density studies on 
the olfactory bulbs of intact animals show that the oscillatory component of the shock 
stimulus evoked potential and the spontaneous gamma oscillation map onto the den-
drodendritic synapse (Martinez and Freeman 1984; Neville and Haberly 2003).   

Slice studies give us further insight into the circuitry involved in gamma oscilla-
tions. While precise spiking in granule cells can be elicited by patterned stimulation 
(Schoppa 2006b), it is not necessary for these cells to spike in order to provide inhibi-
tion to mitral cells and support very precise gamma-coupled spiking of mitral cells 
(Lagier et al. 2004). Current source density has also been used on olfactory bulb 
slices, and the results support those done in intact animals (Aroniadou-Anderjaska et 
al. 1999). 
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Fig. 7. Figure 7. Gamma oscillations are a network phenomenon. a) 500 msec of olfactory 
bulb LFP data showing two inhalations with gamma bursts. At this respiratory rate gamma 
bursts are common; with higher frequency sniffing, gamma bursts become irregular. b) The 
dendrodendritic synapse between mitral and granule cells appears to support the gamma oscilla-
tion, creating a local negative feedback circuit at the reciprocal synapse (Freeman 1975; Rall 
and Shepherd 1968). c) Pulse probability density (PPD) of mitral cell firing times relative to the 
peak of the gamma oscillation response. This is a measure of the probability of a single mitral 
cell firing, and the curve fit closely matches a gamma oscillation. d) Distribution of frequencies 
from many PPD curve fits.  The range of frequencies matches the range of gamma oscillation 
frequencies. (a, c, d compiled with permission from Eeckman and Freeman 1990). 

5.2   Manipulating the Circuit 

Several types of manipulations to the olfactory bulb circuit result in changes to the 
power of gamma oscillations (Fig. 8). Removing centrifugal input to the olfactory 
bulb by various means results in enhancement of gamma oscillations in the olfactory 
bulb (Gray and Skinner 1988; Martin et al. 2004a; Martin et al. 2006). Gray and 
Skinner used a cryoprobe to temporarily cool the olfactory peduncle; they also re-
corded single unit mitral cell activity and showed that the locking to the gamma oscil-
lation of individual mitral cells was more precise when centrifugal input was removed 
and gamma power was higher. This study also suggested that the gamma oscillation 
frequency was slightly decreased under blockade conditions.  Martin and colleagues 
recorded olfactory bulb and piriform cortex activity during lidocaine blockade of only 
the feedback pathway, leaving the feedforward pathway intact (Fig. 8b). They showed 
that the enhanced gamma oscillations in the olfactory bulb were accompanied by 
somewhat enhanced gamma oscillations in the piriform cortex. Although that study 
did not examine the coherence of the oscillations in the two areas, other studies from 
intact animals show that gamma oscillations that occur simultaneously in these two 
highly interconnected structures can show very high levels of coherence (Kay and 
Freeman 1998; Lowry and Kay 2007). 

Two manipulations of inhibition in this circuit produced opposite physiological and 
behavioral results.  In the antennal lobe and mushroom body of many insects, gamma-
like (20 Hz) oscillations are evoked by odorant stimulation of the antennae (Kay and 
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Fig. 8. Olfactory bulb circuit manipulations that affect population synchrony.  a) Sche-
matic of the olfactory bulb circuit (adapted with permission from (Freeman 1975), Academic 
Press). M- mitral cells, G- granule cells, JG- juxtaglomerular cells, ORN- olfactory receptor 
neurons. Deletions associated with manipulations in b-d are labeled with the respective letters 
on the schematic. b) Gamma activity in the olfactory bulb and piriform cortex under normal 
(top) and lidocaine blockade conditions (bottom). Gamma oscillations are enhanced in the 
olfactory bulb and piriform cortex when feedback to the olfactory bulb is blocked (reprinted 
with permission from (Martin et al. 2006)). c) odor induced 20 Hz oscillations in the locust 
antennal lobe (i: top trace and colored plot showing oscillatory correlation between unit and 
field responses during odor presentation). Oscillations are lost when picrotoxin, a GABAA 
receptor antagonist, is applied (ii: top trace and bottom colored plot). Middle plots- slow tempo-
ral structure of projection neuron firing is unchanged (reprinted with permission from 
(MacLeod and Laurent 1996)). d) Comparison between beta3 knockouts and littermate con-
trols. i) Two seconds of LFP data the olfactory bulbs of control mice and knockouts (ii) during 
exploratory behavior.  Note the obvious increase in gamma power. Control mice show normal 
generalization of a learned response to a similar odorant (iii), while the beta3 knockouts show 
no generalization (iv) (Nusser et al. 2001). 

Stopfer 2006; Laurent et al. 1996). These oscillations are supported by the reciprocal 
excitation and inhibition between excitatory projection neurons and GABAergic in-
hibitory local neurons. The projection neurons fire approximately 90 degrees from the 
peak of the odor-evoked oscillation, like the mitral cells in the mammalian system. 
Application of picrotoxin, a GABAA receptor antagonist, to the antennal lobe  
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removes inhibition in this circuit and abolishes odor-evoked oscillations but leaves the 
slower odorant responses in the spiking projection neurons intact (MacLeod and 
Laurent 1996) (Fig. 8c). Furthermore, downstream targets of these neurons lose their 
odor-selectivity when the oscillatory coupling in the antennal lobe circuit is disrupted 
(MacLeod et al. 1998). This same treatment applied to the antennal lobe in honeybees 
also disrupts oscillations, and it impairs the bees’ discrimination of chemically similar 
but not dissimilar odorants (Stopfer et al. 1997). This is described as a deficit in “fine” 
odor discrimination, leaving “coarse” odor discrimination intact. 

A different manipulation of GABAergic inhibition in mice produced opposite re-
sults (Nusser et al. 2001). Beta-3 knockout mice have a specific deletion of this sub-
unit of the GABAA receptor. In the olfactory bulb this results in the specific ablation 
of functional GABAA receptors on granule cells, leaving other GABAergic inhibition 
in the bulb intact. This means that inhibition onto mitral cells at the reciprocal synapse 
is normal. The net effect on the circuit is to knock out mutual inhibition between 
granule cells and GABAergic drive to granule cells from other brain areas. This re-
sults in enhanced gamma oscillations in the olfactory bulb (Fig. 8d), and these mice 
are better than littermate control mice in discrimination of similar (fine) but not dis-
similar (coarse) odors.   

These two studies together suggest that gamma oscillation power, as a surrogate 
measure for neural firing precision, is related to discrimination of overlapping pat-
terns.  However, both of these treatments can cause severe disruption of other circuits, 
and the beta-3 knockout mice in particular have significant behavioral, anatomical 
and neurophysiological abnormalities (Homanics et al. 1997). What remained was 
proof that gamma oscillation power changes relative to the degree of overlap in the 
stimuli to be discriminated. 

5.3   Changing the Intact Circuit with Context 

It was left an open question whether or not animals can modify the amount of gamma 
oscillatory coupling on their own, without the aid of artificial manipulations. If the 
odorants to be discriminated have considerable overlap in their glomerular activation 
patterns (fine discrimination), more gamma oscillatory power should be seen in the 
olfactory bulb as compared to discriminating odorants with little overlap (coarse dis-
crimination). In a study designed to test this hypothesis, Beshel and colleagues trained 
rats in a 2-alternative choice task to discriminate low or high overlap pairs of ketones 
and alcohols. In the case of low overlap, gamma oscillations showed a normal wide 
band irregular pattern during odor sniffing (Fig. 9a,b). When overlap was high and 
performance on the discrimination reached criterion levels, gamma oscillations were 
significantly enhanced (Fig. 9c). 

Curiously, at the same time that olfactory bulb gamma oscillations were high, piri-
form cortex gamma oscillations were very low in power (Fig. 9d), contrary to what is 
seen during spontaneous exploratory behavior. In addition, olfactory bulb gamma 
oscillations did not maintain a high level once learning on an odor set reached crite-
rion levels. Power was low at the beginning of each recording session and increased 
during the course of each session (Fig. 9d). These data suggest that it is not simply a 
wholesale increase in gamma power that accounts for enhanced odor discrimination 
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ability, but that the role of gamma oscillatory precision in the olfactory bulb neural 
population is much more complex than previously thought. 

The mechanism of this dynamic change in gamma band precision is still unknown, 
but the phenomena described above suggest one possible scenario. The timecourse of 
increase in gamma power in the olfactory bulb is similar to the dynamics of a sensory-
evoked gamma power increase with application of muscarinic agonists on visual  
cortex in anesthetized cats (Rodriguez et al. 2004). The suppression of gamma oscilla-
tions in the piriform cortex also fits a cholinergic scenario. Modeling studies suggest 
that acetylcholine in the piriform cortex should reduce the influence of excitatory and 
inhibitory neurons within the piriform cortex, thus ablating piriform cortex 
 

 

Fig. 9. Gamma oscillations are enhanced with task demand. a and b) Sample data for the 
odor sets used to test fine vs. coarse discrimination (the two center examples in a- ketones and 
b- alcohols are the fine odor discrimination pair, while the top and bottom in each group of 4 are 
the coarse pair). c) Olfactory bulb gamma band power distributions across 4 rats during odor 
sniffing for the odor sets in a (c.i) and b (c.ii). d) Evolution of gamma power through sessions 
with criterion performance throughout. i) Coarse discrimination shows no increase in gamma 
power in successive 10 trial blocks through the course of the experiment in either the olfactory 
bulb or piriform cortex. ii) Fine odor discrimination show a stead rise in gamma power only in 
the olfactory bulb during odor sniffing. Blockwise performance values are arrayed at the top in a 
color code. (compiled from (Beshel et al. 2007) and reprinted with permission). 
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gamma oscillations, and turning the pyramidal cells into simple input signal relays 
(Giocomo and Hasselmo 2007; Liljenstrom and Hasselmo 1995). The hypothesis 
receives some support from the increase in gamma oscillations under systemic ad-
ministration of scopolamine, a cholinergic antagonist (Chabaud et al. 1999). This 
suggests that in the case of highly overlapping odor discrimination it is useful to 
maintain an ‘objective’ representation of the input pattern.   

Other neuromodulators may also be able to modify olfactory bulb circuitry to in-
crease or decrease gamma band cooperativity in the mitral cell population. In particu-
lar, D1 receptors at the reciprocal synapse could modify the effective inhibition from 
granule cells and decrease or increase precision accordingly (Brunig et al. 1999; 
Davila et al. 2003). 

6   Multiple Functional Circuits 

As described in section 3, the rat olfactory bulb also exhibits a prominent oscillation 
in the beta frequency band (15-30 Hz), which has been linked to odor learning, phys-
ico-chemical properties of odorants, and predator responses (Lowry and Kay 2007; 
Martin et al. 2007; Martin et al. 2004b; Zibrowski and Vanderwolf 1997). In anesthe-
tized animals they are associated with the exhalation phase of the respiration and can 
show slightly different source-sink profiles than gamma oscillations (Buonviso et al. 
2003; Neville and Haberly 2003).  If gamma oscillations are the hallmark of odor 
associated activity in the olfactory bulb, what role do beta oscillations play?  In par-
ticular, if beta oscillations are elicited upon learning odor discriminations, why aren’t 
they evident in the task described above?  This section will describe the conditions 
under which beta oscillations are observed, and detail the differences between beta 
and gamma oscillations and their behavioral correlates in the olfactory system. 

6.1   Beta Oscillations and Learning 

When rats learn an olfactory discrimination task in a Go/No-Go associative paradigm 
(response to one odor is rewarded, response to the other odor is penalized usually with 
a delay), enhancement of beta oscillations in the olfactory bulb and piriform cortex 
occurs simultaneous with the onset of correct performance in the discrimination (Mar-
tin et al. 2004b) (Fig. 10). Beta oscillations also occur in the hippocampus during odor 
sampling in this task, but the onset of power increase is not locked to the onset of 
correct performance for each odor set (Martin et al. 2007). Coherence between the 
olfactory bulb and hippocampus in the beta frequency band is enhanced as the rats 
learn to transfer the learned behavior to a new odor set, consistent with changes in the 
hippocampus that accompany olfactory rule learning (Zelcer et al. 2006). The coher-
ence is maintained during odor sampling after this point.  What is locked to correct 
performance is an enhanced coherence between the dorsal and ventral subfields of the 
hippocampus. 

Beta oscillations involve a very large network and require intact feedback to the ol-
factory bulb (Martin et al. 2004a; Martin et al. 2006). When feedback to the olfactory 
bulb is ablated, the olfactory bulb produces only gamma oscillations during odor 
discrimination on the lesioned side, while the unlesioned side shows beta oscillations. 
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Fig. 10. Beta oscillations in the olfactory bulb are enhanced with learning in a Go/No-Go 
task. LFP data sample recorded simultaneously from the olfactory bulb (OB) and dorsal and 
ventral portions of the hippocampus (dHPC and vHPC, respectively). Blue vertical line signi-
fies the time at which the odor was turned on, taking approximately 500 msec to arrive at the 
animal’s nose. The horizontal red line indicates the beta oscillation. Reprinted from (Martin et 
al. 2007) with permission. 

6.2   Olfactory Beta Oscillations in Other Conditions 

Beta oscillations are also evoked using a sensitization paradigm in response to the 
predator odorants trimethyl thiazoline and 2-propylthietane (components of fox and 
weasel odors, respectively) and also to organic solvents such as toluene and xylene, 
absent any behavioral associative learning. The response to predator odorants resulted 
in the impression that these oscillations represented a specific predator response in 
rodents (Heale et al. 1994; Zibrowski and Vanderwolf 1997). However, we have re-
cently argued that the volatility of these odorants may be the factor that induces beta 
oscillations (Lowry and Kay 2007). After 3-4 presentations of highly volatile organic 
chemicals (1-120 mm Hg theoretical vapor pressure), rats show prominent olfactory 
system beta oscillations restricted to the period of odor sniffing (Fig. 11). These oscil-
lations are not seen in anesthetized rats under the same exposure conditions. 

6.3   Differences between Oscillations and Tasks 

Why are there two different types of oscillations, each elicited during odor sniffing 
and each associated with learning an odor discrimination? One clue may lie in the 
tasks themselves. In section 5.3 I detailed the study that showed that gamma oscilla-
tions are enhanced during discrimination of highly overlapping odorants. In this 
study, a 2-alternative choice task was used in which both odors were rewarded upon 
responding by pressing a lever on one side or the other (one odor was paired with the 
right and one with the left lever). In the behavioral studies that produced beta oscilla-
tions (section 6.1), two different types of Go/No-Go tasks were used. Two of the three 
studies described in sections 5.3 and 6.1 were performed in the same operant chamber 
with the same odorant delivery system, the same odors and the same shaping proto-
cols (Beshel et al. 2007; Martin et al. 2007). Both tasks use the same perceptual path-
way but require different response associations, pointing out the cognitive difference 
between the two tasks, as has been shown in human studies (Braver et al. 2001). A 
difference in performance accuracy and ease is also seen between 2-alternative choice 
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and Go/No-Go odor discrimination tasks (Abraham et al. 2004; Kay et al. 2006; Rin-
berg et al. 2006b; Uchida and Mainen 2003). 

Go/No-Go tasks are typically easier for animals to learn and easier to transfer to 
new stimulus sets, and in our two studies this was indeed the case. The 2-alternative 
choice task requires an animal to respond with the same behavior in a different loca-
tion to each of two stimuli. The Go/No-Go task requires a distinctly different behavior 
to be associated with each stimulus in a pair. There was little improvement in learning 
time from the first odor set to the last for the 2-alternative choice task (Beshel et al. 
2007), while for the Go/No-Go task the number of trials required to reach criterion 
dropped significantly after the first training set (Martin et al. 2007).   

 

Fig. 11. Beta oscillations arise as a result of sensitization to highly volatile odorants.  a) 
Dynamic power spectra from the olfactory bulb during a first (left) and 11th (right) odor pres-
entation. LFP data from the olfactory bulb and piriform cortex are displayed below. The  
horizontal dark bar indicates the period during which the rat sniffed the odor swab. First trial 
investigation time is always significantly longer than subsequent trials. Note the change from 
gamma bursts to beta oscillations. b) Average olfactory bulb beta band power elicited in the 
olfactory bulb by odorants arrayed by volatility (theoretical vapor pressure) on a log scale.  
Ranges of theoretical vapor pressures are indicated (mixtures are on the far left) such that I 
corresponds to values below 1 mmHg, II to values between 1 and 120 mmHg, and III values 
above 120 mmHg. Circles around data points indicate significance values (single circle- 
p<0.05, double circle- p<0.01).  c) Same as b but for piriform cortex. (Compiled and reprinted 
with permission from Lowry and Kay 2007). 
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What is different about the two systems required to produce the oscillations that is 
consistent with the differences in cognitive structure?  The gamma oscillations pro-
duced in the 2-alternative choice task are local to the olfactory bulb, and the olfactory 
system appears to operate in a feed-forward fashion.  The beta oscillations in the 
Go/No-Go task involve the entire extent of the olfactory and hippocampal systems 
and require a bidirectional connection between these structures and the olfactory bulb.  
This involvement of the downstream brain regions on primary olfactory processing 
may make the Go/No-Go task easier than the 2-alternative choice task.  More research 
is needed to explain this difference. 

7   Conclusion 

The olfactory system presents fertile ground in which to study state-dependent dy-
namical neural structure. Many oscillatory states have been well-dissected, in particu-
lar the gamma oscillations, so that robust inferences can be made from population 
recordings. Decades of research from genetics, brain slices, and recordings in anesthe-
tized, awake and behaving animals give us detailed information about the systems and 
subsystems involved in many characteristic events. New data showing changes in 
functional connectivity and oscillatory signature associated with task differences 
provide a means by which to more fully understand behavioral and cognitive influ-
ences on sensory dynamics. More research should be done to examine the sources of 
beta band oscillations in this system, to understand their role in learning and the rela-
tionship between learning (Martin et al. 2007) and odor sensitization (Lowry and Kay 
2007). The dynamics of gamma oscillations during fine odor discrimination in the 2-
alternative choice task suggest that it is not a simple binary effect that interacts with 
the sensory input overlap (Beshel et al. 2007). More research needs to be done to 
understand the mechanisms involved in the timecourse of gamma upregulation and its 
functional significance. 
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Abstract. It is well accepted that medium to long range navigation re-
quires the use of an external directional reference i.e. a compass. Cheung
et al (2007) recently demonstrated through theory and simulation the
quantitative significance of the compass. It was shown that navigating
agents using and not using a compass could be differentiated on the basis
of the population behaviour. In the current work, theory and simulation
results will be presented on ways to characterize individual paths on the
basis of whether the system was using an external directional reference.
Thus it is demonstrated that important information concerning the neu-
ral input used by a navigating animal may be inferred probabilistically
from its behaviour.

1 Population-Based Behaviour

It is an age old problem to understand the behaviour of a control system e.g. the
brain, based on its input and output, and yet that is often the challenge facing
a neuroethologist. One particular behavioural output which is of interest is an-
imal navigation. Current technology is capable of tracking with unprecedented
precision the position and orientation of animals. However, it is only in strict
laboratory conditions that such behaviour may be measured concurrently with
neurodynamics. It has been shown that the behavioural characteristics of a pop-
ulation of navigating agents differed quantitatively and qualitatively depending
on whether a compass (allothetic directional cue) is available to the population
(Cheung et al 2007). In particular, the expected displacement of an agent has a
finite upper limit if it did not use a compass (using only idiothetic cues)! This
is accompanied by a positional uncertainty which asymptotically increases more
rapidly than that of a Pearson’s random walk (Pearson 1905). Using a compass,
however, an agent could travel arbitrarily far along any predefined direction (axis
of intended locomotion), with relatively small positional uncertainty. With such
a dichotomy in population behaviour, it stands to reason that if it is feasible
to obtain population estimates such as the positional mean and variance along
and perpendicular to the axis of intended locomotion, then it should be pos-
sible to determine with some confidence what class of directional sensory cue
was used (idiothetic or allothetic). The expected properties are summarized in
Table 1.
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Table 1. Population-based characteristics of different forms of directed walks

Type of Directed Walk
Idiothetic Allothetic

xtotal < Emax < nx1 xtotal = nx1

s2
total > n2 > ns2

1 n2 > s2
total = ns2

1

lim
n→∞

s2
x(n) = s2

y(n) lim
n→∞

s2
x(n) �= s2

y(n)

The average displacement after n steps along the axis of intended locomotion
is denoted xtotal, while s2

total denotes the sample variance in position along any
particular axis. The Y direction is designated as being perpendicular to the axis
of intended locomotion. The asymptotic limit for xtotal during a simple idiothetic
directed walk is denoted Emax and was shown by Cheung et al (2007) to be

Emax = lim
n→∞ 〈Xtotal〉 = µL

β

1 − β
(1)

where β = 〈cos∆〉. These characteristics allow populations of navigating agents
undergoing IDWs or ADWs to be differentiated.

2 Individual-Based Behaviour

Despite the analytical rigour of the population-based results, it may be difficult in
practice to obtain a sufficient sample size to be confident of the estimates of pop-
ulation parameters. Furthermore, repeated trials can only be pooled with con-
fidence if the axis of intended locomotion is known for each trial and therefore
aligned.

A very different approach is currently being developed to quantify the IDW
vs ADW character of an individual directed walk (see Fig 1), without a priori
knowledge of the axis of intended locomotion, magnitude of random errors, or
existence of bias. The geometric construct is analogous to the simple directed
walks presented in Cheung et al (2007). The angular error at step t is denoted ∆t.
Hence for a simple idiothetic directed walk, the allocentric heading Θt following t
steps is the sum of all preceding ∆’s. In contrast, for the ideal allothetic directed
walk, a compass is used to reset heading errors at each step such that by the t′th
step, errors from step 1 to t − 1 are zero. In contrast, the turn angle θ depends
only on the difference between the successive headings i.e. Θt+1 − Θt. It is then
possible to define a pair of ideal covariance functions.

The ideal allocentric covariance function is defined as

Covallo = Cov(Θt, Θt+1)
= 〈ΘtΘt+1〉 − 〈Θt〉 〈Θt+1〉 .

(2)
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Fig. 1. (A) Graphical example of an unknown mixture of simulated (unbiased) idio-
thetic and allothetic directed walks with varying magnitudes of random angular dis-
placement errors, and unknown axes of intended locomotion. (B) In this set of 30 paths
of 20 steps, the decision function (Eqn 6) made the correct decision in 28 out of 30 paths
(ADWs = solid lines, IDWs = dotted lines), being unable to decide in the remaining
two (dashed lines). There were no incorrect decisions in this sample set.

Table 2. Angular components and covariance results of directed walks

Type of Directed Walk Covariance Result
Function IDW ADW Cov|IDW Cov|ADW

Covallo Θt =
∑t

j=1 ∆j Θt = ∆t tV (∆) 0

Covego θt = ∆t θt = ∆t+1 − ∆t 0 −V (∆)

The ideal egocentric covariance function is defined as

Covego = Cov(θt, θt+1)
= 〈θtθt+1〉 − 〈θt〉 〈θt+1〉 .

(3)

The pair of ideal covariance functions can be shown to have distinct angular
error components and therefore different values when the directed walk is id-
iothetic or allothetic in nature. These results are summarized in Table 2. This
implies that the pair of covariance values can be used to determine whether the
directed walk was more likely to have been idiothetic or allothetic in nature.

3 Practical Application

In practice, systematic bias is removed by letting Θ′
t = Θt − Θ, which doesn’t

affect the turn angle θ′t = Θ′
t+1−Θ′

t. The following covariance estimates are used
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as inputs to the decision function (Eqn 6):

̂Covallo =
1

n − 2

n−1∑
t=1

(
Θ′

t − Θ′) (Θ′
t+1 − Θ′) (4)

and ̂Covego =
1

n − 3

n−2∑
t=1

(
θ′t − θ′

) (
θ′t+1 − θ′

)
. (5)

Careful examination reveals that the sample estimate of the allocentric covari-
ance function in the case of IDWs is not an unbiased estimator (in contrast to
the other three conditions). Nonetheless, it will be used for its practicality and
simplicity. Using these values as inputs, it is then possible to decide whether the
path travelled was more likely to be idiothetic (I), allothetic (A), or cannot be
reliably decided (U). The decision function Λ() is defined as follows:

Λ
( ̂Covallo, ̂Covego

)
=

⎧⎪⎪⎨⎪⎪⎩
A if

(∣∣∣ ̂CovallôCovego

∣∣∣ < 0.2
)

∩
( ̂Covego < 0

)
I if

(∣∣∣ ̂CovallôCovego

∣∣∣ > 1
)

∪
( ̂Covego > 0

)
U Otherwise

(6)

Ideally, if the spatiotemporal resolution is sufficiently high to record each
locomotory unit in detail, then it should be possible to distinguish each cycle of
locomotion. It is then trivial to apply the decision function presented. However,
if that is not practical, then it is better to undersample rather than oversample
points along the journey. The main reason is to avoid the problem of a strong
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Fig. 2. Test performance of the decision function (Eqn 6) using simulated IDWs and
ADWs. A range of spatial (A) and temporal (B) rediscretization ratios were used to
downsample paths, keeping only the first 20 steps in each path. Simulation parame-
ters: normally distributed ∆ where σ∆ was randomly chosen from the interval [0.1,0.5]
rad; ∆bias was also normally distributed with σbias = 0.1 rad. The performance re-
sults at each rediscretization ratio were calculated from 10,000 simulated paths. Note
’sensitivity’ and ’specificity’ were defined with respect to the ADW.
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but spurious negative correlation between components within one locomotory
unit. For example, if a leftward error is always followed by a rightward error
within one elementary step, this would bias the statistics in favour of a decision
of ’allothetic’, irrespective of the directional cue used. In other words, the paths
have to be rediscretized (Bovet and Benhamou 1988). In principle, this may be
done either spatially or temporally as shown in Fig 2.

It can be seen from the simulation results that the method presented here can
cope with a range of spatial (Fig 2A) and temporal (Fig 2B) rediscretization
ratios, as well as tolerate noise and biases of varying magnitudes. It is noteworthy
that performance (sensitivity and specificity) was always above chance with only
20 steps in each path sample, and yet the failure to make a decision rarely
exceeded 20%.

4 Conclusions

1. Population − based statistical behaviours have already been described, and
should be used where possible to determine the class of sensory input being used
during animal navigation.
2. A novel method for quantifying individual − based statistical behaviour is
under development and shows useful characteristics in simulations and early ex-
perimental trials (data not shown).
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Abstract. The signature of neuronal assemblies is the higher-order cor-
relation structure of the spiking activity of the participating neurons.
Due to the rapid progress in recording technology the massively parallel
data required to search for such signatures are now becoming available.
However, existing statistical analysis tools are severely limited by the
combinatorial explosion in the number of spike patterns to be consid-
ered. Therefore, population measaures need to be constructed reducing
the number of tests and the recording time required, potentially for the
price of being able to answer only a restricted set of questions.

Here we investigate the population histogram of the time course of
neuronal activity as the simplest example. The amplitude distribution of
this histogram is called the complexity distribution. Independent of neu-
ron identity it describes the probability to observe a particular number
of synchronous spikes.

On the basis of two models we illustrate that in the presence of higher-
order correlations already the complexity distribution exhibits character-
istic deviations from expectation. The distribution reflects the presence
of correlation of a given order in the data near the corresponding com-
plexity. However, depending on the details of the model also the regime
of low complexities may be perturbed.

In conclusion we propose that, for certain research questions, new
statistical tools can overcome the problems caused by the combinatorial
explosion in massively parallel recordings by evaluating features of the
complexity distribution.

Keywords and Phrases: spike synchronization, higher-order
synchrony, massively, parallel spike trains.

1 Introduction

Following the hypothesis that assembly activity is expressed by temporal rela-
tions between the spiking activity of the participating neurons, neuronal
� Corresponding author.
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responses need to be observed and analyzed with respect to temporal struc-
ture. With massively parallel recordings becoming available chances to observe
the signature of assembly activity are increasing and indeed the availability of
massively parallel spike data is escalating rapidly (e.g. Nicolelis et al., 1997;
Csicsvari et al., 2003; Ikegaya et al., 2004). However, at this point in time we
lack the corresponding analysis tools (Brown et al., 2004). Most of the existing
methods are based on pairwise analysis (e.g. Aertsen et al., 1989; Nowak et al.,
1995; Kohn & Smith, 2005; Shmiel et al., 2006), approaches to analyze corre-
lations between more than two neurons do exist but typically work only for
a small number of neurons (e.g. Abeles & Gerstein, 1988; Dayhoff & Gerstein,
1983; Grün et al., 2002a,b) or consider pair correlations only while analyzing
the ensemble (e.g. Gerstein et al., 1985; Shlens et al., 2006; Schneidman et al.,
2006). To extend existing methods designed to work on small number of neu-
rons to massively parallel data is generally not feasible. One reason is that
these methods typically assess individual spike patterns, e.g. coincidences with
an identification of the participating neurons, or spatio-temporal spike pat-
tern. An extension to many neurons would lead to a combinatorial explosion.
This particularly holds for methods which include significance tests that do
not only test against full independence, but detect higher-order correlations
(e.g. Martignon et al., 1995; Nakahara & Amari, 2002; Schneider & Grün, 2003;
Gütig et al., 2003; Ehm et al., 2007). Additional complications are the limited
number of samples in experimental data, in particular if data are non-stationary.
Only a few approaches exist that can handle and analyze massively parallel data
for higher-order correlations. These approaches are based either on the model
assumption of synfire chains (Schrader et al., 2008) or on compound Poisson
processes (Staude et al., 2007, 2008).

Here we aim at a fast screening method that can detect correlation within
massively parallel spike data. We base our approach on the distribution of the
sum of spikes across neurons as reflected in the population histogram. In par-
ticular we explore how coincidence patterns of higher-order are reflected in this
measure and if the order of the correlation can be identified. The dependence
on parameters relevant for experimental data are studied using numerical and
analytical methods.

Preliminary results have been presented in abstract form (Grün et al., 2003).

2 Correlation Model

We model massively parallel spike trains as N parallel stationary processes. For
the generation of correlation we use slightly modified versions of two types of
models, recently published by Kuhn et al. (2003). The basic idea underlying both
models is to have a hidden Poisson ‘mother’ process of rate α, from which spikes
are copied into parallel child processes according to a given probability ε. If ε = 1
the model is named ‘single interaction process’ (SIP). All spikes of the mother
process are present in all N child processes, such that synchronous higher-order
spike events across all neurons are induced for each spike in the mother process.
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Fig. 1. Sketches of the models used for generating parallel spike data with higher-order
spike coincidences in m out of N processes (A: SIPm model, B MIPm model). Rate p
of the neurons is the same in both models and also for the m correlated and N − m
uncorrelated neurons. The bottom m neurons in the SIPm model contain coincident
events at rate α involving all m neurons. These neurons also contain uncorrelated
background spikes at rate p − α. In the MIPm model the m neurons typically contain
coincidences of lower order than m depending on the copy probability ε, and do not
contain background spikes. The rate of insertion is α = p/ε. (C) shows the SIPm model
with reordered time bins. In the left part the bottom m neurons contain coincidences
of order m in all time steps exhibiting the dependent fraction, the right part shows the
independent fraction of the time bins.

In case ε < 1 the model is called ‘multiple interaction process’ (MIP). Here,
not necessarily all neurons receive a copy of the mother process’ spikes, and the
neurons receiving a spike are randomly chosen out of all N processes. As a result,
the generated synchronous patterns differ in composition of neurons and in their
complexity, i.e. the number of spikes in the pattern.

Here, we modify the models as follows. First, instead of expressing the model
as Poisson processes in continuous time we formulate it in discretized time as
Bernoulli processes. The reason is that we anyway aim to detect coincident
events via binning. Formulating the model in continuous time with subsequent
binning would lead to additional effects not relevant for the present study (cmp.
Staude et al., 2008). Second, in a realistic recording session with N electrodes
we do not expect to record from the same assembly at all electrodes. Instead we
expect to observe at most a subset of m < N neurons to participate in the same
assembly. Therefore we copy the spikes of the mother process into m selected
processes only. Third, correlated activity found in experimental data is typically
embedded in uncorrelated ’background’ firing activity (e.g. Riehle et al., 1997;
Abeles et al., 1993; Prut et al., 1998). Therefore we ‘dilute’ the activity of the
fully synchronized neurons with uncorrelated background spikes.

Thus, we define the following models of correlated activity.

Single interaction process in m out of N neurons: SIPm. From a Bernoulli
process of rate α, discretized in bins of width h (typically 1ms) we copy spikes
with probability ε = 1 into m out of N single neuron channels. Into each of the
m processes of the correlated neurons we in addition to the synchronized events
inject uncorrelated spikes modeled by a Bernoulli process of rate pb = p−α (see
Fig. 1A for a sketch of the model, and Fig. 2A for an example realization with
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Fig. 2. Dot displays of realizations of the (A) SIPm model, (B) MIPm model and (C)
control data generated by spike time randomization of the data of the MIPm model in
(B). The parameters common to all panels are N = 100, rate p = 0.02, and h = 0.001s.
The duration shown is T = 500ms. In (A) neurons 1 . . . 20 (m = 20) are correlated
with α = 0.005, in (B) neurons 1 . . . 20 (m = 20) are correlated with ε = 0.8. The
middle row shows the same data as in the top row with random ordering of the neuron
identifiers. The bottom row shows the population histograms (bin size h = 0.001s)
identical for the top and the middle panel of each column.

ordered (top) and randomized (middle) neuron identifiers. Under the constraint
that all N neurons have the same firing rate p we model the N −m uncorrelated
processes as independent Bernoulli processes of rate p. The parameter ranges we
consider are the typical firing rates of cortical neurons (from a few to ≈ 100Hz)
and coincidence rates up to a few Hz as extracted from experimental cortical data
(Grün et al., 1999). Thus α is typically small relative to the firing probability p.

Multiple interaction process in m out of N neurons: MIPm. From a
Bernoulli process of rate α, discretized in bins of width h (typically 1ms) we
copy spikes with a probability ε ≤ 1 into m out of N neurons (for ε = 1 this
corresponds to SIPm without background and α = p). Here we do not insert
background spikes into the m processes since due to the reduced copy probability
also isolated spikes are generated appearing as background. The firing rate of
these neurons is p = α · ε. To fulfill the constraint that all neurons have the
same firing rates the N − m uncorrelated processes are modelled as a Bernoulli
processes with firing probability p (see Fig. 1B for a sketch of the model, and
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Fig. 2B for an example realization with ordered (top) and randomized (middle)
neuron identifiers.

Control data. For comparison we generate control data without any correlated
component. To this end we randomize the spike times (bins occupied by a spike)
of SIPm and MIPm realizations along the temporal axis. This conserves the spike
counts of the original data thereby avoiding additional variance (see Fig. 2C for
an example of control data for the MIPm model realization in Fig. 2B).

3 Distribution of Coincidence Counts

Next we explore how correlation between groups of neurons is expressed in simple
measures like the population histogram and the distribution of the corresponding
counts per bin. Thus we ignore individual spike constellations across the neurons
and restrict the description to the distribution of the number of spikes of all N
neurons within a bin, i.e. the complexity ξ (shown in Fig. 2, bottom row). We
derive analytical descriptions of the distributions for both model types and then
compare these to simulations.

3.1 Coincidence Count Distribution of SIPm Model

The mathematical description of the coincidence distribution of correlated pro-
cesses can be split into two contributions. Given that the time bins are indepen-
dent, i.e. the processes have no memory, we can reorganize the bins in time (see
Fig. 1C). Let us first collect the bins that contain injected coincidences (‘depen-
dent part’), then consider the rest i.e. all the time bins containing uncorrelated
activity (‘independent part’). The probability distribution of the dependent part
is characterized by coincidences of order m with firing probability α in the m
out of N neurons. The N − m neurons fire independently with rate p. The coin-
cidence distribution of only those N −m neurons follows a binomial distribution

B(i, N − m, p) =
(

N − m

i

)
pi · (1 − p)(N−m−i). (1)

These coincident events meet injected events of order m. Thus we obtain for the
distribution of synchronized events of order ξ = i + m in the N neurons:

PSIP,dep(ξ) = B(ξ − m, N − m, p). (2)

Since injected coincidences are of order m only patterns of complexities with at
least m spikes are found; the probability for synchronous events of complexity
ξ < m is 0. The expectation value is

< ξSIP,dep >= (N − m) · p + m. (3)

The coincidence distribution of the remaining bins (independent part) is charac-
terized by chance coincidences only. As before, the N −m neurons exhibit chance
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coincidences according to a binomial distribution with firing probability p as ex-
pressed in Eq. 1. However, the firing probability of the m
neurons in the independent part pb = p − α is reduced by the injection proba-
bility of the synchronous events. The coincidence probability of these neurons is
B(j, m, pb) =

(
m
j

)
pj

b · (1 − pb)(m−j). Consequently, we obtain the probability to
observe a coincidence of a given complexity ξ by considering all possible com-
binations summing up to ξ of the number of coincidences among the group of
N − m neurons and the number of coincidences among the group of m neurons.
This is expressed by the convolution of the two binomial distributions:

PSIP,indep(ξ) =
∑

i

B(i, N − m, p) · B(ξ − i, m, pb) (4)

abbreviated as

= B(i, N − m, p) ∗ B(ξ − i, m, pb)

where we define B(i, M, p) = 0 for i < 0 and i > M . Thus the expectation value
of this part of the complexity distribution is

< ξSIP,indep >= (N − m) · p + m · (p − α) = Np − mα. (5)

Finally, the total coincidence distribution is the sum of the distributions of the
two parts Eq. 2 and Eq. 4 weighted by the relative number of bins containing
injected coincidences and its complement respectively. For large values of T we
just consider the mean fractions α of the dependent part and (1 − α) of the
independent part:

PSIPm(ξ) = α · PSIP,dep(ξ) + (1 − α) · PSIP,indep(ξ). (6)

For simplicity we ignore the loss of spikes induced by the injection of coincident
events into background activity with subsequent clipping (Grün et al., 1999)
since for the range of parameters studied the probability for such collisions is
very small (α · pb).

3.2 Coincidence Count Distribution of MIPm Model

In case of the MIPm model coincidences are inserted according to a given prob-
ability ε which defines the probability to copy spikes from the mother process
into m of the N neurons. Let us again consider first only the part of the bins
in which the mother process contained a spike (dependent part). The probabil-
ity distribution for coincidences within the m neurons only is B(i, m, ε) (cmp.
Kuhn et al., 2003). These events occur with the rate of the mother process, i.e.
with probability α. The spiking probability of the m neurons is p = ε ·α. For the
remaining N − m neurons the same expression for the coincidence distribution
holds as given above in Eq. 1. Thus, we yield for the dependent part:

PMIP,dep(ξ) = B(i, m, ε) ∗ B(ξ − i, N − m, p). (7)
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Fig. 3. Coincidence probability distributions of the SIPm model (A) and the MIPm

model (B). Distributions (horizontal axis: coincidence complexity ξ ranging for better
visibility only from 0 to 40) are constructed from realizations of duration T = 100s at
the resolution of the data h = 0.001s, with N = 100 neurons and firing probability
p = 0.02 for all neurons. m = 20 neurons contain correlated activity. In case of SIPm

the coincidence rate is α = 0.005, in case of MIPm the copy probability is ε = 0.8
resulting in an insertion probability of α = 0.025. Top row: probability distribution of
the raw coincidence counts; middle: results for the respective uncorrelated control data;
bottom: difference distribution (model - control). The gray curves represent analytical
results, black dots show results of simulations.

The mean complexity is

< ξMIP,dep >= (N − m) · p + m · ε. (8)

Thus, MIPm differs from SIPm in the sense that not all m neurons are correlated
with order m. Furthermore, SIPm contains background spikes in the correlated
neurons, whereas MIPm does not. For the part of the bins without a spike in the
mother process (independent part) the description of the distribution is similar
to the one for the SIPm model (Eq. 4), however here the equation simplifies to
chance coincidences from the N − m neurons only:

PMIP,indep(ξ) = B(ξ, N − m, p). (9)

The mean complexity is

< ξMIP,indep >= (N − m) · p. (10)
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The total probability distribution then results from weighting by the relative
contributions:

PMIP,dep(ξ) = α · PMIP,dep + (1 − α) · PMIP,indep

= α · B(i, m, ε) ∗ B(ξ − i, N − m, p) + (1 − α) · B(ξ, N − m, p).

Fig. 3 illustrates the coincidence count distributions for the SIPm and the MIPm

model.

3.3 Control Data

In case of uncorrelated data (no insertion), the firing probability of all processes
in Eq. 4 is p for both model types, and thus Eq. 4 reduces to:

Pctrl(ξ) = B(i, m, p) ∗ B(ξ − i, N − m, p) = B(ξ, N, p) (11)

by using the addition formula for binomial coefficients. The same result holds
for the control data for the MIPm model. The expectation value for the mean
complexity is < ξctrl >= Np. This distribution reflects the coincidence distri-
bution assuming full independence of the processes subject to the constraint of
identical firing rates.

4 Comparing Model and Control Data

In the following we compare model and control data based on our analytical
derivations and simulations. In particular we are interested to know in how far
model and control data differ and, in view of data analysis, how this knowledge
can be used to detect correlation. As the population dot displays in Fig. 2B
demonstrate, model and control data are visually not distinguishable if the neu-
ron identifiers are randomly arranged. Also the coincidence count distributions
are visually very similar Fig. 3 (top, middle). Therefore we subtract the control
data from the model data to highlight potential net excess coincidences in the
model data Fig. 3 (bottom). Here deviations become clearly visible: at low com-
plexities the model data contain more coincidences than the control, at slightly
higher complexities they contain less coincidences, and for complexities at about
ξ = m there is again an excess of coincidences.

These features are characteristic for both models (Fig. 3, bottom row), how-
ever for SIPm excess coincidences occur with a hump at a value of ξ slightly
above m, for MIPm the hump is located below ξ = m. Due to the chosen copy
probability of ε = 0.8 for MIPm, the probability for patterns of complexity ξ = m
is low, and therefore the complexity of the hump is at ξ < m. In contrast, for
SIPm the hump is at values ξ > m, since patterns of complexity m are inserted,
and by chance meet background spikes of the N − m uncorrelated neurons.

The origin of the differences of the model data and the control data at
low complexities is less obvious. Let us therefore restate the expression for the
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Fig. 4. Constituents of the complexity distribution. The thick gray curve shows the
difference between the probability distribution of the SIPm model and the respective
control (m = 30, N = 100, p = 0.03, α = 0.01, T = 100s, and h = 0.001s). The
black dots show the difference distribution for a SIPm model in which the background
probability of the m neurons containing coincidences is elevated to match the rate p of
the N −m independent ones. Both SIPm models exhibit the same excess hump starting
at ξ = 30, but for the latter model the pronounced biphasic feature at low complexities
is reduced to a small dimple (cmp. Eq. 4). The asterisks show the difference distribution
for the original SIPm model without injected coincidences; the m neurons only have
uncorrelated background spikes at rate p−α. The excess of high complexities is absent
but the biphasic feature is conserved.

difference of the SIPm model and the control data (subtract Eq. 3.3 from
Eq. 6):

PSIP,diff (ξ) = PSIPm(ξ) − Pctrl(ξ)
=α · B(ξ − m, N − m, p)+(1− α) · B(i, N − m, p) ∗ B(ξ − i, m, pb)

− B(ξ, N, p) .

For the sake of simplicity we assume that coincidences are inserted into all N
processes. Thus Eq. 4 simplifies to:

PSIP,diff (ξ) = αPdep + (1 − α)B(ξ, N, pb) − B(ξ, N, p)

with

Pdep =

{
0 if ξ < N

1 if ξ = N .
(12)

Injected coincidences enter PSIP,diff (ξ) only at ξ = N with probability α. The
remaining term expresses the contributions of the chance coincidences and their
difference to the control data. Obviously, the distribution of the coincidences
of the control data is shifted to a higher mean value (Np) as compared to the
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chance coincidences of the independent part of the model data (Npb). The sub-
traction of the two distributions leaves a positive peak at small complexities,
and a negative peak at somewhat higher complexities (Fig. 4). This difference
can almost completely be compensated by increasing the rate of the independent
part to p. In this case Eq. 4 reduces to:

PSIP,diff(ξ) = αPdep + (1 − α) · B(ξ, N, p) − B(ξ, N, p)
= αPdep − α · B(ξ, N, p)

or in the general case of m < N

PSIP,diff (ξ) = α · B(ξ − m, N − m, p) − α · B(ξ, N, p) .

Whereas the entries at complexities ξ > m are not affected Fig. 4 (cmp. the
gray curve and black dots at the hump around ξ = 32), the biphasic feature
at low complexities is reduced to a dimple reflecting the binomial distribution
of chance coincidences scaled by −α. The negative weight originates from the
normalization constraint of the correlated data. The biphasic feature at low
complexities can be replicated (Fig. 4, black asterisks) by independent data in
which m neurons have a reduced firing probability p − α as it is the case in the
independent part of the SIPm model.

In conclusion, the biphasic feature at low complexities in the difference distri-
bution of model and control data is due to the constraint of all neurons having
the same firing probability and not due to the injected coincidences. The feature
can be eliminated by adjusting the background rate of the correlated neurons
to a rate comparable to the rate of the independent neurons. As outlined in the
discussion section, we may be able to exploit this observation to differentiate
between candidate mechanisms for the generation of correlated spiking in the
neuronal system.

5 Parameter Variations

After having understood how inserted higher-order coincident spike events in-
fluence the coincidence distribution, we now study parameters relevant for the
analysis of neurophysiological data. Typical questions on an experimental data
set are: Is there correlation in the data? What is the order of the correlation,
i.e. how many and which neurons are involved? Furthermore, synchronous spike
events may occur with a temporal jitter that does not correspond to the bin
width chosen for analysis.

5.1 Variation of Correlation Order m

In the SIPm model coincidences of synchronized spike events of order m are
inserted into m neurons and in Fig. 2A we studied the coincidence distributions
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Fig. 5. Dependence of the complexity distribution on the order of the correlation (top:
model data, middle: control data, bottom: difference of model and control). (A) vari-
ation (vertical) of m for the SIPm model ( m = 5 . . . 50 in steps of 5, α = 0.005) and
(B) variation of ε for the MIPm model (ε = 0.05 . . . 1 in steps of 0.05). The gray code
indicates the probability to observe a coincidence pattern of a certain complexity ξ
(horizontal). The data in the top panels result from simulations of the respective mod-
els with parameters N = 100, p = 0.02, T = 100s, and h = 0.001s. In the MIPm model
α is adjusted for each ε value to account for p = α · ε. The control data are generated
by temporal randomization of the spikes of the model data.

for m = 20 in N = 100 neurons. Now we are interested to see how the system-
atically varied order m of the injected coincidences affects the distribution. As
before we study the distribution of the correlated data, the control data and
their difference, however now visualized by a color code along the horizontal
axis (ξ) and for increasing m along the vertical axis (Fig. 5A). Again, we find
the biphasic feature for low complexities, which hardly varies with increasing m
since the insertion and background rates are not changed.

The inserted coincidences, again, are not visible in the raw coincidence matrix.
Only in the difference matrix (Fig. 5A,bottom) with increasing m excess coin-
cidences appear at a complexity always somewhat higher than m since inserted
coincidences of order m by chance meet background spikes which increases the
complexity of the detected coincidence patterns.

For small m, the coincidences due to insertion overlap with the features due
to the constraint on spike rate and the biphasic shape is disguised.
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of model and control data). Common parameters of the simulations are: m = 20,
N = 100, T = 100s, h = 0.001s. The gray code indicates the probability to observe a
coincidence pattern of a certain complexity ξ (horizontal). (A) The firing probability
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5.2 Variation of Copy Probability ε

In physiological terms the copy probability ε of the MIPm model corresponds
to the participation probability of the neurons in an assembly activation. In
Fig. 5B we keep the total number of neurons N constant, as well as the number
of neurons m (here 20) in which coincidences are inserted. With increasing ε the
mean complexity of the excess coincidences increase linearly according to Eq. 8.
For ε = 1, which corresponds to SIPm without background, the mean complexity
reaches a value slightly above m (Fig. 5B, bottom). The amplitude of the hump
decreases with increasing ε which is due the requirement of constant firing rate
subject to the relation p = ε · α. To fulfill this constraint the rate of the mother
process α has to decrease with increasing ε. At the same time the variance of the
complexity of the excess coincidences becomes larger according to m · ε · (1− ε)),
but due to the simultaneous decrease of α the hump appears less wide in the
difference plot.
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Summarizing the variation of m and ε leaves us with the insight that from
the position of the excess hump we cannot directly conclude on the number of
neurons involved in the correlation if the underlying model is not known. The
hump position could either directly reflect the number of correlated neurons for
SIPm, or is indicating a smaller number of neurons than are actually involved in
the correlation due a value of ε < 1 in the MIPm model. As a consequence the
underlying model must first be identified. One option is to extract the coincidence
patterns which exhibit excess complexities and analyze them for their individual
composition. If always the same set of neurons is active in a pattern we can
conclude on SIPm. However, if patterns are composed of subsets of a particular
superset of neurons we can conclude on a MIPm type model.

5.3 Variation of Firing Rates

Fig. 6A, top panel shows the dependence of the coincidence distribution on
the total firing probability p for constant N , m, and coincidence probability α
in case of SIPm. By increasing p also the background spike probability pb of
the neurons with injected coincidences increases (pb = p − α). Consequently,
the mean complexity of the peak of the independent part of the coincidence
distribution increases according to Eq. 5. The complexity at the hump of the
excess coincidences (Fig. 6A, bottom) mainly corresponding to the dependent
part also increases with the firing probability p but with a smaller slope, i.e.
according to Eq. 3 with (N − m)p + m, since (N − m)p < Np.

Similar considerations hold for changes of the coincidence rate α (Fig. 6B).
Keeping all other parameters constant, a change of the coincidence injection
probability α only affects the hump height, but not its complexity. Only the
complexity of the independent part at small complexities is affected, since an
increase of the coincidence probability leads to a decrease of the background
probability in the m neurons. Consequently, as discussed in section 4, the dif-
ference in chance coincidences of the model and the control data increases
(cmp. Eq. 4).

5.4 Variation of Bin Width vs. Temporal Jitter

Coincident spike events of pairs of cortical neurons typically have a temporal
jitter of a few ms (see e.g. Grün et al., 1999; Pazienti et al., 2008). Such a jitter
can be modeled by copying the spikes of the mother processes not always into
exactly the same bin across the neurons, but to allow copying into neighbor-
ing bins with some probability. For the sake of simplicity, here we decide for a
rectangular distribution of spike times as described in the caption of Fig. 7.

One option to detect jittered coincidences, is to adjust the bin width (e.g.
Grün et al., 1999, 2002a) to the precision of the spikes. Since in an electrophys-
iological experiment the appropriate bin width cannot be known in advance, we
analyze the same data set with increasing bin width. Thus, instead of counting
the simultaneously emitted spikes at the resolution of the data h, we now count
the spikes within w neighboring time steps. w is called the bin width and we
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Fig. 7. Coincidence probability distribution (top: model data, middle: control data,
bottom: difference of model and control) of the SIPm model under variation of the
bin width w (varied from 1 to 20 in steps of 1 in units of h = 0.001s, vertical axis).
The analyzed data sets differ in the temporal jitter of the inserted coincidences: in (A)
the coincidences are exact without temporal jitter, in (B) the jitter is j = 5h. The
jitter is generated by randomly displacing each spike of each neuron within a window
of ±0.5j centered at its original position, thereby generating coincident spike events
with a maximal distance of j. The gray code indicates the probability of occurrence of
coincidence patterns as a function of complexity ξ (horizontal). The data in the top
panels result from simulations of the SIPm model with parameters N = 100, T = 100s,
h = 0.001s, m = 20, α = 0.05 and p = 0.02.

also call the sum of events complexity although a single neuron may contribute
more than one spike.

Similar to the foregoing displays we then plot the coincidence probability
distribution as a function of the complexity ξ horizontally, and along the vertical
axis as a function of the bin width w (in units of h). Fig. 7 shows in A the result
for a non-jittered data set and in B the result for a data set where coincidences
have a jitter of up to j = 5ms. Even in the case of no jitter the complexity of the
peak of the chance coincidences increases with bin width. This holds for both,
the model and the control data. The reason is that with increasing bin width the
probability to detect spikes within a bin trivially increases due to background
activity. For the independent part the coincidence probability distribution for a
bin width w reads:

PSIP,indep(ξ, w) = (1 − α) · B(i, (N − m) · w, p) ∗ B(ξ − i, m · w, pb)
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Thus the mean of the independent part of the complexity distribution increases
as w(N − m) · p+wm · pb). The detected complexities are generally higher than
in the original case where the width of the bins corresponds to the resolution h
of the generating Bernoulli process.

For the dependent part we obtain:

PSIP,dep(ξ, w) = α · B(ξ − m, (N − m)w, p). (13)

The mean complexity is m + w(N − m)p.
If coincidences are jittered, only part of the coincidences are detected for wh <

j. For small w the complexity of the detected excess coincidences is reduced to the
number of spikes of an injected coincidence falling into one bin. Furthermore, the
counts of these events is smaller than the injected number and therefore the hump
of the excess coincidences is small. From wh = j on, all inserted coincidences
are detected (neglecting debris due to exclusive binning; Grün et al., 1999). The
complexity of the hump is now increasing faster with w as for the range of bin
sizes for w < j. This change of slope at w = j may be used as an indicator for
the precision of synchronization in the data.

6 Discussion

The goal of this study is to learn if a simple measure like the population his-
togram generated from parallel spike data can be used to detect correlation
between the spike trains. To study such a situation we re-formulated two types
of models for parallel point processes, which enables us to generate many parallel
spike trains with a subgroup of them being correlated and exhibiting coincident
spiking. As a measure of correlation between the spike trains we use the coinci-
dence count distribution which is the amplitude distribution of the population
histogram, i.e. the sum of spikes across the neurons within a predefined bin size
as a function of time.

We illustrate that correlations are neither directly visible in the population
dot display nor in the coincidence distribution, since background spikes act as
a strong noise component. These spikes generate a large number of entries in
the coincident count distribution at low complexities dominating the distribu-
tion. We choose to account for effects of background firing rate by comparing
the model data to control data, which contain the same number of spikes per
neuron but with the single neurons exhibiting fully independent firing. Still, the
distribution of the original and the control data appear very similar by visual
inspection, and only the difference of the two gives indication of correlation in
the model data.

We find that correlation in a subset of the neurons can be clearly identi-
fied by entries in the difference matrix at the complexities close to the order of
correlation contained in the data. The exact complexity observed depends on
the assumed underlying model. For SIPm the minimum complexity of the ex-
cess coincidence entries reflects the number of correlated neurons, for MIPm the
maximum. The two models can be distinguished by extracting the time bins of
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entries of high complexity and analyzing the detailed composition of the neurons
contributing to the patterns. In SIPm a subset of m neurons would always fire
together, for MIPm a subset of m neurons would be involved but would con-
tribute with different compositions of neurons. The latter seems to be a quite
realistic assumption. Realizations of the synfire chain model would exhibit such
activity in each group of the chain, since not all neurons in a group need to be
active for stable propagation of a synfire run (Diesmann et al., 1999). A typical
participation probability for each individual neuron, which corresponds to ε in
the MIPm model, is about 0.8.

If the number of correlated neurons, however, becomes small compared to the
chance complexities the hump of the excess coincidences drowns in the noise.
However, for m as small as 5 the hump of the excess coincidences already sep-
arates from the background. Larger background firing rate would indeed shift
the peak of the chance coincidences to somewhat higher complexities, but also
shifts the hump of the excess coincidences due to enhanced chances to meet
background spikes.

An obvious biphasic feature in the difference coincidence distribution occurs at
low complexities which we identified as being due to the constraint of all neurons
having the same firing probability. As a consequence of the presence of correlated
spikes the background firing of the neurons in the correlated data set is reduced.
Therefore the distribution exhibits a decreased probability for small complexities
as compared to the fully independent control data. Thus, if coincident events are
injected into processes containing the same rate as the independent processes,
the biphasic feature is absent and the difference coincidence distribution becomes
almost flat in this regime.

This observation provides an interesting option to distinguish two potential
mechanisms for the generation of synchronous spike events in the neuronal sys-
tem. In one scenario additional synchronized events are generated by the system
without affecting the ongoing activity, which would correspond to the case where
the neurons receiving additional coincidences have an increased rate (by p−pb) as
compared to the neurons without coincidences. An example situation is where
some of the observed neurons are part of an occasionally active feed-forward
subnetwork (synfire chain, Schrader et al., 2008). Alternatively, spikes could be
shifted such that they become synchronized with others. This would correspond
to the case where firing rates are the same for all neurons. An example situation
is where spikes become locked to global network oscillations.

The comparison of experimental data with data that implement control mod-
els is a standard approach in the correlation analysis of parallel spike trains (e.g.
Pipa & Grün, 2003; Ikegaya et al., 2004; Shmiel et al., 2006). Such a compar-
ison is mostly formulated as a significance test where the control data realize
a specific null-hypothesis. The analysis presented here is rather thought of as
a fast scanning procedure helping to decide if a data set contains interesting
correlation which should further be analyzed in more detail. It provides a com-
parison of original data to control data realizing full statistical independence.
The latter can be analytically described by a Bernoulli distribution. However,
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also a numerical realization can be achieved easily in practice by randomizing
the bins of each neuron in time. Such a surrogate also conserves the spike count
of each neuron. In contrast, realizations of Bernoulli processes with the firing
probability estimated from the data would introduce additional variance.

A next step would be to add a statistical test to the discussed approach. One
way of quantifying differences of the complexity distributions would be to per-
form a test on the full distribution (e.g. Pipa & Grün, 2003; Pipa et al., 2008)
another to calculate and compare the moments or cumulants (Staude et al.,
2007, 2008). The latter also provides the option to compare the experimental
data to models which include sucessively higher orders of correlation as imple-
mented in Staude et al. (2008), which then enable statements on the minimal
order consistent with the data.

Other aspects that need to be considered in extentions of the current approach
are typical features of experimental data: non-stationarity of the firing rate in
time, inhomogeneous rates of the different neurons, and temporal modulation
of the correlation (e.g. Riehle et al., 1997). Such situations can rapidly reach a
level of complexity severely impeding analytical descriptions but the flourishing
idea of surrogates can come to the rescue (see Grün (2008) for a review).
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Abstract. This study investigates the range of behaviors possible in ensembles 
of spiking neurons and the effect of their connectivity on ensemble dynamics 
utilizing a novel application of statistical measures and visualization techniques. 
One thousand spiking neurons were simulated, systematically varying the 
strength of excitation and inhibition, and the traditional measures of spike dis-
tributions – spike count, ISI-CV, and Fano factor – were compared. We also 
measured the kurtosis of the spike count distributions. Visualizations of these 
measures across the parameter spaces show a range of dynamic regimes, from 
simple uncorrelated spike trains (low connectivity) through intermediate levels 
of structure through to seizure-like activity. Like absolute spike counts, both 
ISI-CV and Fano factor were maximized for different types of seizure states. By 
contrast, kurtosis was maximized for intermediate regions, which from inspec-
tion of the spike raster plots exhibit nested oscillations and fine temporal dy-
namics. Brain regions exhibit nested oscillations during tasks that involve active 
attending, sensory processing and memory retrieval. We therefore propose that 
kurtosis is a useful addition to the statistical toolbox for identifying interesting 
structure in neuron ensemble activity. 

1   Introduction 

With the multi-electrode recording techniques available today, it is possible to discern 
spiking activity from dozens or even hundreds of neurons simultaneously from 
awake, behaving animals [1]. In the first half of the twentieth century, it was discov-
ered that electrical activity in the brain oscillates in characteristic ways (see [2] for a 
review at the time), and now these new recording techniques have allowed the exami-
nation of neural ensemble spiking activity, and how it relates to local field potential 
(LFP) recordings which characterise brain oscillations. It can be seen that simulated 
populations of neurons also display synchronous and oscillatory behaviour (see Fig-
ure 1), and theoretical work has shown how this behaviour can be supported by the 
individual firing regimes of sparsely connected neurons [3]. 
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There are numerous methods for measuring regularities in spike trains (e.g. power 
spectra, spike-count distributions). Two of the most popular are the Fano Factor [4] and 
the coefficient of variation of the interspike interval (ISI-CV) [5]. These two measures 
are maximised for super-synchronous seizure-like spike trains, and in simulations of 
coupled networks of neurons, are themselves closely correlated with the total number of 
spikes generated by the network in a given time. Hence, they do not provide a measure of 
the structure in realistic spike trains with typical intermediate levels of activity. The new 
metric presented here, called the Kurtosis Score, more clearly reveals the nested oscilla-
tory patterns of activation found in simulated spike trains, where bursts of high frequency 
appear at the peaks of lower frequency oscillations. 

With desktop computing power available today, it is becoming practical to use pa-
rameter sweeps across multi-dimensional spaces as a tool for investigating the behav-
iour of complex systems. If system behaviours can be quantified with one or more 
metrics, these metrics can be displayed as graphs called heat maps that can reveal re-
lationships between parameters and between metrics that may otherwise remain hid-
den. In the following sections, heat maps are used to compare Kurtosis Score, total 
spike count, Fano Factor and ISI-CV for their effectiveness at identifying simulated 
spike trains with varying characteristics. The chapter concludes with a discussion of 
when it may be best to use Fano Factor or ISI-CV, and when Kurtosis Score may be 
the more appropriate metric. 

2   Methods 

Kurtosis Score is defined as the fourth cumulant divided by the square of the variance 
of the spikes per millisecond distribution, simultaneously recorded or simulated for a 
large number of neurons. Fano Factor [4] is the variance divided by the mean of the 
spikes per millisecond distribution. ISI-CV [5] is the standard deviation divided by 
the mean of the interspike interval (interspike intervals are calculated for each neuron 
separately, and then all calculated intervals are combined for the ISI distribution). 

In order to compare these metrics, Kurtosis Score, spike count, Fano Factor and 
ISI-CV were calculated for simulated spike train data. This data was obtained by 
simulating networks of Izhikevich model neurons [6]. Each network was fully con-
nected, contained 800 pyramidal cells and 200 interneurons and was run for 1000 ms 
of simulated time. The metric calculations excluded the first 400 ms of each trial to 
give the networks time to settle from their initial conditions; the metrics were than 
calculated for the time period 401 to 1000 ms. The excitatory weights in the networks 
were distributed (uniform random) between zero and a maximum weight w+

max that 
varied from trial to trial. w+

max varied systematically between zero and a value large 
enough for approximately four presynaptic neuron spikes to alone cause a spike in a 
postsynaptic neuron (typical cortical synaptic efficacies require 10 to 40 presynaptic 
spikes to activate a postsynaptic neuron, which is approximately in the middle of the 
range over which w+

max varied). The maximum inhibitory synaptic weight w-
max var-

ied between zero and twice the maximum excitatory weight (i.e. w-
max = -2w+

max). All 
weights were subject to short term depression with exponential recovery [7]. The ex-
citatory and inhibitory weight variation between trials created networks that behaved 
very differently across different regions of this parameter space, and the spike trains 
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thus generated ranged from uncorrelated activity to super-synchronous seizure-like 
states. Each neuron received zero-mean Gaussian input, with standard deviation of 5 
for pyramidal cells and 2 for interneurons [6]. Because the network input and connec-
tions are stochastic, 50 to 100 instances of the networks were simulated at each testing 
point in parameter space and the calculated metrics averaged to obtain a picture of the 
mean network behaviour at each parameter space point. The averaged metric scores 
were plotted on 2-dimensional graphs called heat maps for visualisation of how the 
metrics change over the parameter space, with excitatory weight on the abscissa and 
inhibitory weight the ordinate. 

3   Results 

Simulations of the network with varying excitatory and inhibitory connection 
strengths showed a variety of behaviours (see Figure 1). In these examples, Fano Fac-
tor and ISI-CV were maximal for super-synchronised spike trains, while Kurtosis 
Score was maximal for spike trains containing bursts of gamma wave activity nested 
within slower oscillations. By systematically varying the parameters for the excitatory 
and inhibitory connection strengths, a picture of how these metrics change and relate 
to each other can be constructed (see Figure 2; full color version available online). 
When Kurtosis Score was mapped across the entire tested parameter space, a region 
of high kurtosis where spike trains exhibit high structure became apparent (Figure 2D 
– light blue to white regions). When compared with ISI-CV, Fano Factor and the total 
number of spikes generated in the simulation period, Kurtosis Score can be seen to be 
high in regions of parameter space adjacent to high ISI-CV and Fano Factor, where 
the total number of spikes also begins rising dramatically (Figure 2A, B and C). 
Clearly high Fano Factor and ISI-CV primarily indicate super-synchrony (which also 
tends to generate more total spikes), while Kurtosis Score is quite low in these super-
synchronous regions of weight space. Instead, Kurtosis Score is high when the spike 
train contains fine but unpredictable temporal structure, rather than either fully pre-
dictable or completely random. 

4   Discussion 

Fano Factor and ISI-CV are both ratio metrics with the mean as the divisor. Thus 
these values are maximized as the mean approaches zero, as long as some variance is 
maintained. For Fano Factor this maximization occurs in a seizure-like state where 
bursts of activity are short and ‘rest’ periods long, while for ISI-CV it occurs also in 
seizure but when bursts are long and rest times short. If the Fano Factor and ISI-CV 
graphs from Figure 2 are rescaled so that the shade transitions occur in the region 
where Kurtosis Score is highest, it can be seen that ISI-CV actually decreases, while 
Fano Factor increases monotonically towards the seizure state throughout the region 
of high kurtosis (see Figure 3). The clear implication is that Fano Factor and ISI-CV 
are not good measures of spike train structure; rather they give slightly different ac-
counts of the closeness of a spike train to super-synchrony. 

 



118 P. Stratton and J. Wiles 

A

C D

Random 

Super-synchronized High structure 

Regular 

B

Kurtosis Fano ISI-CV # Spikes (Excitation,Inhibition) 
A  0.4   1.0 0.5   4500 (0, 0) 
B 24.7  23.4 0.5   9300 (1, 2.75) 
C  5.4 834.8 5.2 120000 (2, 2.75) 
D 70.1  58.4 0.6  11000 (2, 10) 

 

Fig. 1. Characteristic behaviors from different regions of parameter space. Spike raster plots 
from four simulated networks show the same 100 neurons fully connected with different synap-
tic strengths, resulting in very different network dynamics in each case. Below each raster plot 
is the spike count distribution. (A): Random. No connections between neurons gives a Kurtosis 
Score close to 0, a Fano Factor close to 1, indicating a near Poisson distribution, and a low ISI-
CV. (B): Regular. Intermediate excitation and inhibition gives a moderately high Kurtosis 
Score, a higher but still relatively small Fano Factor and a low ISI-CV. (C): Super-
synchronized. Strong excitation and intermediate inhibition gives a low Kurtosis Score but 
Fano Factor and ISI-CV are maximized by this super-synchronized activity. (D): High struc-
ture. Strong excitation and strong inhibition strengthens the fast oscillations and ‘fine’ temporal 
dynamics, and hence maximizes the Kurtosis Score, while Fano Factor and ISI-CV are reduced. 
(Insets): The spike count distributions plotted on log-log axes (see Discussion). 
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Fig. 2. Different measures of spike train characteristics, plotted across the excitatory and inhibi-
tory weight space. The legend at right of each graph shows the shade correspondence to the 
displayed metric. The four networks from Figure 1(A-D) are placed in context on this graph. 
(Top Left): ISI-CV is the standard deviation of the interspike interval divided by the mean. This 
value is maximized when the network is in a fully synchronized (seizure) state. This state is 
comprised predominantly of short periods of no activity punctuated by very long bursts of ac-
tivity when all neurons fire almost simultaneously. (Top Right): Fano Factor is similar in shape 
and analysis to ISI-CV except that its value is maximized when the network is in a seizure state 
comprised of long periods of no activity punctuated by very short bursts when all neurons fire 
almost simultaneously. (Bottom Left): The total number of spikes generated by the network cor-
relates with both Fano Factor and ISI-CV. (Bottom Right): The Kurtosis Score identifies those 
regions in parameter space where slow oscillations predominate but are punctuated by short pe-
riods of fast oscillations (in the sampled networks, these fast oscillations occur at the slow  
oscillation peaks but this doesn’t affect the score calculation – see Discussion). The slow oscil-
lations give fewer spikes per millisecond and cause the peak of the distribution close to zero. 
The fast oscillations that cause many simultaneous or near-simultaneous spikes create the long 
tail. The combination of tall peak and long tail increases the kurtosis and, because the distribu-
tion is heavily skewed to the right (see histograms in Figure 1B and D) also increases the skew-
ness. Seizure-like spike trains do not have this characteristic since they are comprised of two 
quite distinct peaks in the distribution, dramatically lowering the kurtosis. 
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Fig. 3. ISI-CV and Fano Factor graphs from Figure 2 rescaled to reveal characteristics in the 
region of high kurtosis. ISI-CV decreases, while Fano Factor increases monotonically towards 
the seizure state throughout the region of high kurtosis. 

High Kurtosis Score occurs in a region of weight space immediately adjacent to 
seizure-like activity (Figures 2 and 3). Thus to operate in a high Kurtosis Score re-
gime the nervous system needs to maintain tight control over excitation and inhibi-
tion. Slightly too much of the former or slightly too little of the latter will tip the  
network into seizure. Given the lifetime prevalence of epilepsy of 2-5% in the general 
population [8], the failure of the brain to maintain this tight control may not be an un-
common problem. Continuous electro-encephalogram (EEG) recordings are available 
from epileptic patients before, during and after seizures, and it would be interesting to 
calculate these metrics on EEG data recorded prior to and during seizures to test for 
any diagnostic or predictive capabilities. 

The power spectra of EEG traces over long time frames demonstrate a power law 
distribution [9]. The mammalian cortex also appears to be wired using small world 
connectivity principles, so that it simultaneously minimises path lengths and the re-
quired number of connections (see [10] for a synthesis of ideas on this topic). It seems 
the brain is using scale-free principles for both physical structure and macro-scale dy-
namics. Is it possible that micro-scale spiking behaviour may also be governed by 
similar principles? Intriguingly, it has been said that kurtosis should be thought of as 
the scale-free movement of probability from the shoulders of a distribution to the cen-
tre and tails [11]. Spike count distributions plotted on log-log axes show a tendency to 
straight lines for those spike trains with high Kurtosis Score (see Figure 1 insets: 
compare the curve of Figure 1A inset showing low Kurtosis Score with the more lin-
ear relationship in Figure 1D inset with the highest Kurtosis Score). While a linear re-
lationship on a log-log graph is not sufficient to demonstrate a scale-free distribution, 
it is consistent with one, and it remains as future work to investigate the potential link. 
Note that for any scale-free distribution, the kurtosis will increase as the exponent in 
the power law (i.e. the slope of the line in the log-log plot) increases, whereas a true 
power law regression should be independent of slope. 

Because Kurtosis Score is based on the spike count distribution, it omits all infor-
mation about the order of the events in the spike train. An alternative spike train to 
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Fig. 4. A transformed spike train with the same Kurtosis Score and Fano Factor as Figure 1D. 
This spike train was obtained by dividing the raster plot of Figure 1D into 1 ms time slices, and 
sorting the slices according to spike count. The Kurtosis Scores for the original and transformed 
raster plots are the same since the spike count distribution is unchanged by the sorting process. 
The difference in the spike trains also shows that the Kurtosis Score gives very different infor-
mation to a spectrum analysis. 

 

that shown in Figure 1D, where the events are sorted in increasing number of spikes 
per millisecond, shows very different structure (see Figure 4). This spike train has the 
same Kurtosis Score as in Figure 1D because it has the same spike count distribution. 
Therefore to say that the Kurtosis Score identifies nested oscillations is incorrect; but 
in the context of spike events in networks of neurons, highly kurtotic distributions are 
much more likely to be generated by nested oscillations such as illustrated in Figure 
1D than by spike trains like that shown in Figure 4. Also, true scale-free behaviour 
should be scale-free over a broad range of timescales (Figure 1D) rather than being 
dependent on the chosen sampling start and end times (Figure 4). 

Just as the Fano Factor was developed in the context of the statistical properties of 
ionising radiation [4], yet is applicable in diverse domains, so too is Kurtosis Score. 
Events in any domain that occur discretely in time or space are amenable to Kurtosis 
Score calculation, and it will be particularly relevant where a power law relationship 
is hypothesised or known to exist. This includes graph and queuing theory, medicine 
and epidemiology, physics, geology, economics, ecology and sociology to name a few 
[12]. We also suggest that the technique used in this study of performing parameter 
sweeps across multi-dimensional spaces and displaying the results as heat maps can 
be a great aid for visualisation and understanding of complex system behaviour, and 
with the computing power now available this technique can be successfully applied to 
the simulated neural network domain. 
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Abstract. A short history of simulation models for living organism behaviour is 
presented. The machine designed by Bent Russell, 1913, to simulate the theory 
on nervous conduction, introduced by the psychologists Max Meyer and Ed-
ward Thorndike, is described. The new ideas on the mechanization of thought 
processes, carried out in the Cybernetic Age are commented and some models 
of neuronal nets based on these ideas are reported. Finally, a system of coupled 
oscillators, introduced by V. Braitenberg, E.R. Caianiello, F. Lauria and N. On-
esto, is presented as an example of a cybernetic model comparing it with to-
day’s researches on nervous systems. 

1   Pre-History – Russell’s Machine 

The branch of science that we now call Neuronal Network (n.n.) has been developed 
in the last sixty years. It is based on the works carried out by psychologists, engineers, 
physicists and mathematicians during the first half of the 20th century, works that 
opened the door to a new science, i.e. the Cybernetics, the science of communication 
and control.  

At the beginning of the last century, the studies on organic and non-organic worlds 
were completely separated. The prejudice that capacities, as learning, recognition and 
so on, were distinctive features of living organisms ruled.  

According to psychologists, man cannot build, using physical principles, machines 
showing capacities of living organisms.  

But after a few years things started to change and some scientists began to consider 
the possibility to fill the gap between the organic and inorganic worlds. Some 
capacities of living organisms, as learning, were not viewed as the opposite of a 
mechanic behaviour but, on the contrary, as a particular kind of automatization.One 
step in this direction was made by the engineer S.B. Russell [18] (1913) who designed 
a machine to simulate certain hypothesis on the plasticity of nervous connections, 
pointed out by the psychologists M. Meyer and E.L. Thorndike.  

Specifically, Meyer [12] formulated the Drainage Theory of Nervous Conduction 
“nervous flux runs like a fluid through a system of pipes of modificable capacity 
connected by one-way valves (synapsis)”, while Thorndike proposed the Theory of 
the Reinforcements of Stimulus – Response (S-R) Connections.  
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The relationship between the plasticity of a nervous system and its learning capac-
ity suggested in the works of Meyer and Thorndike was exposed explicitly by Russell 
through the hypothesis that continuous or frequent stimulations of neurons at short 
time intervals could result in a strengthening of the connections between neurons and 
an increase of their conductivity. While discontinuous or not frequent stimulations 
could weaken the connections and decrease conductivity.  

Russell, on the basis of this nervous system image, designed and built a hydraulic 
machine that embodied the neurological hypothesis.  

The fundamental unit of the machine is the transmitter, a valve with an inlet pipe to 
introduce a flux of air or water, and an outlet pipe to discharge it. The maximum 
opening of the transmitter changes in time and thus the quantity of the flux that is 
discharged.  

The transmitter is a mechanical device which has a kind of memory, indeed it 
modifies its own behavior according to its previous functioning, its history. The 
transmitter simulates the nervous conductivity, conjectured by the psychologists, 
which is increased or decreased according to the frequency of the stimulus acting on 
the neurons.  

The behavior of Russell’s machine depends on what could be called the “experi-
ences” of the transmitters. 

The importance of the result obtained by Russell was recognized by the psycholo-
gist Meyer who pointed out that: if a machine is capable of learning and forgetting, 
using only the rules of mechanics, there is no necessity to invoke non-physical princi-
ples to account for the ability, typical of living organisms, to adapt to environments 
and to learn.  

In conclusion, although only simple kinds of learning could be simulated at that 
time, the learning machines share with the living organisms some “essential ele-
ments” that reveal a common functional organization and justify the mechanicistic 
explanation of learning.  

At the end of his work, Russell called for the importance of a cooperative work be-
tween scientists of different branches to develop researches on the nervous system. 
Unfortunately, Russell’s appeal was not taken into consideration. At that time, multid-
isciplinary studies were not well considered and the mechanicistic interpretation of 
living organisms was accepted only by very few scientists.  

2   The Cybernetic Age 

Thirty years later Russell’s appeal was appreciated. This happened in 1943 when two 
papers were published: 
 

1) Behaviour, purpose and teleology; 
2) A logical calculus of the ideas immanent in the nervous activity. 

 

These papers opened a new age in the history of mechanization of thought proc-
esses, the so called Cybernetic Age, even if the word Cybernetic was introduced some 
years later (1947) by N. Wiener. 

According to Wiener, Cybernetics, from the Greek word kybernetes (pilot – 
steersman), is a new science; the science that studies the laws of control and commu-
nication in animals and machines. You see, finally, the gap between organic and  
inorganic worlds seems overcome.  
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The new science accepts the mechanicistic interpretation of living organisms and 
goes beyond the deterministic evolution of the microscopic physics systems. 

It takes into account the following points: 

1) What is relevant in the systems is the common organization that they show and 
not the specific nature of their components. This statement was put forward in 
the paper “Behaviour, Purpose, Teleology” by A. Rosenblueth, N. Wiener, and J. 
Biglelov [16] to clarify that cybernetics is interested in the study of the function 
of systems independently from their composition. 

2) The analytic method, that studies systems dividing them into elementary parts, 
cannot describe the cooperative behaviour of  systems containing a large number 
of elements interacting with each other. The collective behaviour of a system 
shows characteristic “properties” that are not present in the sum of its single ele-
ments (Wholeness, Gestalt: The well known global perception that in psychology 
is called “structuralism”).  

3) The central characteristic of living organisms, whose evolution is fixed by the 
future, the finality, the aim of the action, cannot be described using the concept 
of energy. Energy and its transformations lead to the deterministic evolution in 
which everything is fixed by the past. In a science that deals with living organ-
isms, deterministic evolution has to be substituted with probabilistic one; i.e. us-
ing the language of physics, we have to replace the Classical Mechanics with the 
Thermodynamic and substitute the role of Energy with that of Entropy. In this 
way the irreversibility of time, present in the organic world, is introduced  
naturally.  

The relevance of Entropy in Cybernetics, the science of transmission and commu-
nications, finds its justification in the work of C.E. Shannon [19].  

In 1948 Shannon, to put on rigorous bases the study of signals transmission in the 
telephone channels, defined a quantitative measure of the information. The informa-
tion introduced by Shannon for a code of N elements takes the following expression: 
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Pi is the probability of finding the element i of the code and N are the elements of 
the code. The quantity I is just what the physicists identify as the Entropy of the Code. 

Based on these new ideas, at the beginning of the Cybernetic Age, many machines, 
robots, were designed and built, but the large part of these artifacts mimicked animal 
behaviour without illuminating the underlying functional principles that could justify 
the analogy between organisms and machines. The single devices gave the opportu-
nity to explore the principles of automatism and control and were more engineering 
than psychological experiments.  

But some years later, (1950), designing suitable machines, it was possible to test 
some theoretical hypotheses formulated by psychologists. In these cases the robots 
were material models embodying assumptions expressed in theoretical models. 

Starting from the second part of the 1950s this requirement was at the core of sev-
eral cybernetic programs. These programs were developed using different approaches 
according to the professional background of the scientists who developed them. 
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3   Theoretical Models: Neuronal Networks  

The theoretical models introduced at that time had a common structure which imitate 
that of the nervous system: a set of elementary unities of elaboration interacting with 
each other through connections. To stress the analogy with the nervous system the 
unity and the connection were called respectively artificial neuron and synapsis.  

The aim was to see whether, starting with very simplified models, it was possible 
to reproduce some intelligent actions as classification, recognition and learning. These 
models can be considered as the first examples of Neuronal Nets.  

In 1943 W.S. McCulloch [11] and W. Pitts realized the first neuronal nets. Their 
models were based on the logic and the psychology available at the time. The models 
described the brain functions, by using logical calculus.  Assembling a few neurons, 
suitably connected, McChulloch and Pitts designed devices that implemented logical 
functions. The impact of these results was enormous: any definition or statement 
corresponds to a network of neurons culminating in a single neuron that uniquely 
represented the logic preposition. Very important is that by means of this scheme it 
was possible to clarify the law of human behaviour.  

McCulloch and Pitts’ neuronal nets were able to reproduce logical calculus but 
could not learn. The plasticity present in any nervous system, adaptation to the envi-
ronment, was completely absent in their networks. The learning ability was intro-
duced some years later.  

Two types of learning were developed: 

1) Supervised learning; 
2) Unsupervised learning. 

Unsupervised learning was based on the ideas of the psychologist Donald Hebb 
[17] who, inspired by his studies on animal behaviour, proposed in 1942, the first 
learning rule for neuronal nets, the so called associative learning: “The coupling (syn-
apsis) between two neurons is variable, it increases any time that the two neurons are 
simultaneously active”. 

Supervised Learning performed the update of the synapsis by requiring the net-
work to give exact answers to a set of examples (training set). 

The supervised learning was introduced later, by F. Rosenblatt [15], who proposed 
a general class of networks called Perceptrons in 1962.  

The Perceptron is a one layer forward neuronal net that adapts itself to the envi-
ronment using a learning algorithm. The algorithm changes the value of the synapsis 
between the input and the output neurons, any time the answer of the neuronal nets to 
the input example is wrong.  

It was possible to show that after a period of training, the network was able to gen-
eralize giving correct answers to examples which were not contained in the training 
set.  

In the same years B. Widrow and M.E. Hoft [21] proposed a different learning al-
gorithm, the so called ADALINE (Adaptive Linear Neuron) or δ rule to update the 
synapsis of the perceptron. The new learning algorithm, based on the minimization of 
a suitable cost function, was very effective.  
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In 1961 E.R. Caianiello [4] published, in the first issue of the Journal of Theoreti-
cal Biology the work “An Outline of a Theory of Thought Processes and Thinking 
Machines”. 

The major innovations introduced in the paper were related to Caianiello’s scien-
tific background, who was a theoretical physicist with a vast experience in the study 
of complex systems. 

He observed that in a nervous system there were two different scales of time: a fast 
one (10-3 sec.) that described the dynamics of the neuron and a very slow one (103 
sec.) that controlled the adaptation of the nervous system to the environment, i.e. the 
change of the synapsis.  

On the basis of this observation he divided the study of neuronal nets into two parts: 
dynamic and learning. Specifically, Caianiello assumed that in presence of two so differ-
ent time scales, it is justified to study the evolution of neurons keeping the synapsis fixed 
and thus, extending to the neuronal nets the adiabatic hypothesis, well known in physics, 
he wrote two types of equations: The Dynamic and the Mnemonic Equations. 

The Dynamic Equations describe the evolution of an ensemble of N neurons inter-
acting each other with fixed coupling (synapsis). In formulae 
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Â  is the NxN synapsis matrix independent on time, tX
r

 is a vector with N compo-

nents which describes the set of neurons at the time t. b
v

is the threshold vector.  

The Mnemonic Equations describe the evolution of the synapsis i.e. the learning 
processes related to the adaptation of neuronal nets to the environment. The mne-
monic equations are a generalization of the Hebb rule: 

The coupling between i and  j neurons increases if the neuron i is active at the time 
t and the neuron j to time t+1, otherwise decreases. A threshold T limits the maximum 
value taken by the coupling. A schematic behaviour of the coupling Ak,h is reported in 
the picture: 
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It is not worth explaining Caianiello’s model in detail, but one should like to stress 
two points: 

1) The model gives a remarkable contribution by introducing a solid frame of mod-
ellization into the study of nervous systems according to standard theoretical 
physics; 

2) The adiabatic hypothesis was very important for the future development of the 
neuronal net models. 

4   XOR Problem and Back Propagation  

The researches on neuronal nets, developed so rapidly after the introduction of 
McCulloch’s artificial neuron, were strongly depressed when in 1969 the book “Per-
ceptron” by M.L. Minsky and S.R. Papert [13].  

Minsky proved that the implementation of one of the elementary logical functions, 
the XOR, and then the possibility to use forward neuronal nets to perform logical 
calculus, cannot be performed by one layer network, but requires the use of multilayer 
structures.  

Minsky and Papert’s criticism and the lack, at that time, of a learning algorithm ca-
pable of updating multilayer neuronal nets produced much skepticism on the neuronal 
net computation capacities and a brusque decay of the scientific interest in this re-
search field.  

Looking back at that crisis some years later, it was evident that the loss of interest 
in the neural net researchers was due more to the outstanding position of Minsky and 
Papert, members of the Parallel Distributed Processes (PDP) of San Diego University 
in California, than to serious scientific reasons. Indeed, after the publication of the 
M.P. book the U.S. National funds for researchers in neural nets abruptly decreased, 
and for almost 20 years most of the computer science community left the neural net 
program.   

Nevertheless, a few scientists continued to work on the topic and some important 
unsupervised models, based on the generalization of Hebb mechanisms or competitive 
mechanisms, were proposed in the following years.  

Examples of these activities are: 

1) The biologically plausible models introduced by S. Grossberg [6]; 
2) The Content Addressable Memory (CAM) by J.A. Anderson [2]; 
3) The Adaptive Resonance Theory (ART) by G.A. Carpenter and S. Grossberg [5]; 
4) The self Organization Map (SOM) proposed by T. Kohonen [9]; 
5) The Topographic Map by S.A. Amari [1]; 
6) The model introduced by J.J. Hopfield [8] to implement associative memory 

which is an interesting reformulation of the Content Addressable Memory 
(CAM) in terms of physical systems. The model became very popular and helped 
to recall the attention on neural net research. 

More details on this period can be found in the book: Neurocomputing: Founda-
tions of Research, Cambridge 1988, MIT Press.  

In 1986, a new age on the research of neuronal nets began. This happened when 
D.E. Rumelhart and J.L.McClelland [17] proposed the Back Propagation Algorithm 
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to update the synapsis of a multilayer neuronal net. The new algorithm, an extension 
of the δ Rule by Windrow, already introduced by Y. Le Cun [10], D.B. Parker [14], 
and P. Werbos [20]  in different contexts, overcame Minsky and Papert’s criticism 
regarding the use of neuronal nets to perform logical calculus and raised a new inter-
est in this research field.  

Applications of neuronal net algorithms in different branches: classification, pat-
tern-recognition, control, learning, were performed and comparison with other meth-
odologies, as the standard statistic approach, fuzzy sets and so on, put in evidence the 
points of stress and weakness of the neuronal net algorithm.  

Today, models containing new neurobiological plausible mechanisms have been 
introduced and the use of neuronal nets to clarify neuroscience problems is of big 
interest.  

5   An Array of Coupled Oscillators to Model Neuronal Behaviour 

In conclusion we would like to mention the paper “A System of Coupled Oscillators 
as a Functional Model of Neuronal Assemblies” published in 1959 in the journal Il 
Nuovo Cimento. The paper was written by V. Braitenberg (neuroscientist), E.R. 
Caianiello (physicist) and two mathematicians F. Lauria and N. Onesto [3]. 

We have selected this paper for two reasons: 

1) To present a witness of the interdisciplinary activity on neuronal nets carried out 
in Naples by the E.R. Caianiello group since 1956; 

2) To illustrate a modellization of nervous functions which satisfy some principles 
that Wiener, ten years earlier, had set at the basis of the new science “Cybernetics”. 

The proposed network is very modern and up-to-date.  
Specifically, in the paper, a simple model, based on a neurobiological plausible 

mechanism, is presented: an array of coupled oscillators. The coupling between oscilla-
tors is variable. Inputs, represented by the changes of some couplings of the array, gener-
ate outputs that show different frequency spectra of the total oscillations of the network. 
a) The transmission of the signals, the input-output relations, are produced by a 

cooperative behaviour. The system realizes the wholeness effect (Gestalt); In-
deed, the output modes of the network are typical of the system as a whole and 
are different from the modes of single oscillators. The oscillation of the array de-
pends on the couplings and not on the state of the single unities.  

b) The network shows learning capacities. An example of associative memory is 
realized: the input-output acquires the basic properties of the recall; 

c) A non localized memory is realized in the network. The record of the input pat-
terns is delocalized, it is distributed on couplings which are in different sites of 
the array. 
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Abstract. CA3 region of hippocampus may be considered as an initial store-
room for memories. During spatial memory tasks CA3 cells were found to fire 
in single well defined portions of a recording room (place-fields), whereas cells 
in both of its afferent regions, entorhinal cortex (EC) and dentate gyrus (DG), 
showed activity at multiple locations within an environment. DG by prior theo-
retical studies was proposed to be a “teacher”, by dominating activity through 
its strong and very sparse connectivity during storage in CA3. It becomes how-
ever an intriguing question, how DG, firing at multiple locations, may set up a 
new spatial memory composed of exclusively single place-fields in CA3. Here 
we report that dentate gyrus is necessary to set up novel spatial memories in 
CA3 and multiple peaks of dentate gyrus may combined into mostly single 
fields by competitive learning in CA3. 

Keywords: Hippocampus, dentate gyrus, mossy fibers, competitive learning. 

1   Introduction 

Marr formulated a theory how hippocampus may form new memories [1]. The most 
important assumption of his work was that recurrent connections in CA3 may play a 
crucial role in memory recall, during which a noisy version of a stored memory via 
reverberation through the CA3 collaterals would be restored to the full representation. 
A mathematical model by Hopfield [2] based on Marr's idea identified memory to be 
the attractor states of such networks, with the maximum number of retrievable stable 
states scaling with the number of associatively modifiable recurrent connections per 
cell [3].  

There is, however, a conflict between storage of new patterns and recall of previ-
ous memories. During storage the network has to be driven by external stimuli, as 
opposed to recall when activity should rather be determined by the recurrent collat-
erals. Further, storage of correlated patterns would decrease number of memories that 
can be recalled. As proposed by McNaughton and Morris [4], mossy fibers, in their 
model taken to be a strong one-to-one connection between DG and CA3, may effec-
tively suppress recurrents during storage and transfer the activity of DG to CA3 re-
gion, to the associative memory. As clarified by Treves and Rolls [5], what matters, 
instead, is that mossy fiber synapses be strong, sparse and relay sparse activity from 
DG, where codes for different memories could be decorrelated by various mecha-
nisms. This would be sufficient to select a limited ensemble of CA3 cells coding for a 
new memory. The theory thus far is backed by experimental results [6]. Storage  
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mediated by DG may be coupled with neuromodulation found to selectively suppress 
recurrent collaterals and enhance synaptic plasticity during storage [7,8].  

In spatial memory tasks, as a rat forages in an environment, hippocampal CA3 and 
CA1 cells tend to fire in a single limited portion of physical space, emitting virtually 
no spikes elsewhere [9]. Input to hippocampus arrives via the entorhinal cortex [10], 
where, in its dorsal part, cells were found to fire at multiple locations within one envi-
ronment, arranged on the vertices of a triangular grid [11]. Interestingly, nearby cells 
were found to fire with the same spatial frequency and orientation, whereas neurons, 
located further apart showed a different orientation and spatial frequency increased 
towards more ventral locations. Cells in DG were also found to fire in multiple peaks 
[12], lacking however a clear spatial organization as described for entorhinal cortex.  

Firing correlates of both mEC and DG cells, contacting CA3 cells directly, was 
thus found to be strikingly different from place-fields, it is thus an intriguing question, 
how place-field firing of CA3 cells could be understood by the newly discovered fir-
ing correlates of its afferents.  

Early models concentrated on explaining formation of place-fields via perforant 
path only [13-15]. A model by Solstad et al [13] shows single peaks would be ob-
tained only if CA3 cells would integrate exclusively from those EC cells that have a 
peak in common in the same position where the CA3 cell has its place-field. Such a 
selection may be mediated by diverse mechanisms. Indeed, competitive learning [14] 
may decrease the number of resulting place-fields, as well as phase-precession [15], 
accounting, however, mainly for place-field formation in area DG. 

In order thus to understand formation of place-fields in CA3, recurrent connections 
have also to be considered. An effective storage, as reviewed already [4,5], would neces-
sitate strong inputs from DG. Also, spatial memories seem to represent a marginally  
stable state and are susceptible to noise [19], hence a clear spatial metric, decreasing 
“wrinkles” on these maps, during training is needed, transmitted through mossy fiber 
synapses. Recurrent collaterals then, if appropriately trained, could decrease more effi-
ciently, than a network without a dentate area, the number of firing fields in region of 
CA3 as well as recall stored maps better. Given, however, that mossy fiber synapses, 
thought to set up new memories in CA3, were shown to have multiple peaks, as well as 
there is a slight convergence from few but multiple dentate cells towards CA3, it is un-
clear, how such inputs would finally combine to single peaks in CA3. 

2   Methods 

To find an answer to these question, we simulated a simplified hippocampal network 
comprising of medial entorhinal cortex and CA3, with and without a region simulat-
ing dentate granule cells, active only during training. A simplified dentate layer was 
used during training, where each cell fired at a single spatial location with one-to-one 
connections between DG to CA3. We first show that number of fields in CA3, com-
pared to a network without a layer of DG, tend to be smaller, as a result of several 
iterations through appropriately trained recurrent connections. Next, we assumed mul-
tiple fields in DG and a slight convergence from several dentate cells in CA3. A 
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place-field in CA3 may form where firing fields from DG coincide. Here we tested 
the hypothesis that competitive learning then may eliminate additional peaks, leading 
to the formation of single peaks in CA3. 

In our model, as described in [20], we first assumed dentate cells to fire in single 
peaks as well as to have strong, one-to-one connections between DG and CA3, 
whereas contact probability between entorhinal cortex and CA3 cells was much 
higher. In the second part, dentate cells were taken to have double fields, and each 
CA3 cell received contacts from two dentate cells. Only medial EC cells, thus grid 
cells were simulated, with 10 orientation and spatial frequency bands ranging from 1 
up to 3 peaks per environment. During training a model rat foraged in a simulated, 
1x1 m square box, at each step weights between EC and CA3 as well as the recurrent 
collaterals in CA3 were updated using a modified Hebbian learning rule.  During test-
ing the model rat foraged in the same simulated environment, where at each position a 
partial cue was provided to EC and a template matching decoding was applied to test 
accuracy of network response. Templates were recorded from 400 positions within 
the environment, with input gradually fading to 0 in order to get representation stored 
in memory. Besides estimating memory performance of the network, number of firing 
fields were also counted. 

3   Results 

Simulating DG with single peaks and one-to-one connections was found to set up a 
stronger memory in CA3 than in a network without a dentate region, as shown by 
percent correct localization using template matching decoding (Fig 1A). Number of 
firing peaks in memory representation in CA3 decreased for both networks, but to 
considerably lower levels in case of using dentate cells, reaching bona fide single 
peaks after 3 epochs of training (Fig 1B; periodic boundary conditions were used). 
Without dentate gyrus several cells with double fields were found, shown also on 3 
representative cells and several cells developed overly large fields (Fig1C). The rea-
son for a worse performance on percent correct localization was due to a collapse to 
some final attractor states, due to a lack of strong metric information during training.  

We next compared, in the case when dentate was simulated, performance of the 
network at pattern onset, corresponding to a purely feed-forward state, with that after 
each iteration in the recurrent connections. Number of place-fields (Fig 1E), evaluated 
after 2 epochs of training, decreased reliably during recall, that is, reverberation in 
recurrent connections further decreased the number of firing peaks in CA3, shown 
also on 3 example cells (Fig 1F). A decrease in number of fields was accompanied by 
a steady rise in percent correct performance, reaching a maximum after approximately 
the same number of iterations (8 iterations) when minimum number of place-fields 
were counted (7 iterations).  

Next, to simulate a more realistic dentate gyrus, dentate cells were assumed to have 
double peaks with a slight convergence from two dentate cells on one CA3 cell during 
learning. During training, number of peaks decreased from an initially high number to 
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Fig. 1. Development of place-fields with and without a simulated DG area. (A) Percent correct 
localization increases during learning, but decays back in the absence of DG. (B) Enhanced 
decrement in number or place-fields was seen when DG was simulated. (C) Sample place-
fields from networks with and without DG, after 9 iterations (roughly 100 ms) in the recurrent 
network. Compact place-fields are formed only when DG is simulated. Percent correct localiza-
tion increases (D), whereas number of place-fields decreases (E) during reverberation in the 
recurrent network. (F) Development of place-fields during reverberation in the recurrent net-
work, smaller secondary peaks tended to vanish. Error bars: s.d., except for B: s.e.m.  

a level with many CA3 cells having single fields, thus significantly below a level ex-
pected if CA3 cells would fire in all positions where their afferent dentate cells were 
active (between 3 and 4). Firing patterns in CA3, however, did not reach the criterion 
of bona fide place-fields (Fig 2B). Percent correct performance (Fig 2A) was found to 
increase considerably due to training, the network, however, showed less accuracy 
recalling locations as did the network trained with a simplified dentate (cf. Fig 1A). 
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Fig. 2. Development of place-fields in CA3 trained with a more realistic DG. (A) Percent cor-
rect localization increases considerably, but to a lesser extent when considering single peaks in 
DG. (B) Number of firing peaks in CA3 decreases to near single fields in CA3, but a consider-
able fraction of cells fire in more than one location. (C) Representative cells from the first and 
second learning epoch, showing single and double fields. Error bars: s.d., except in B: s.e.m.  

4   Discussion 

Cells in medial entorhinal cortex projecting to hippocampus were found to fire in 
multiple locations within one environment, arranged on the vertices of a triangular 
grid [11] and cells in DG, thought to dominate activity in CA3 [4,5] during storage in 
order to set up new memories, were also found to fire in multiple, randomly posi-
tioned peaks [12]. Models, using feed-forward architecture could thus far account for 
formation of multiple peaks, generally found in DG [13-15].  

Here we showed input from dentate gyrus is necessary to set up stable memories as 
well as to reach bona fide place-fields in an associative memory like CA3 region of 
hippocampus. Our model is also able to give partial account for the formation of sin-
gle fields in CA3 when more realistic parameters for dentate cells are considered, thus 
multiple peaks together with a slight convergence from DG towards CA3. As a con-
siderable portion of CA3 cells fired at double locations, other ingredients should also 
be considered, like synaptic modifications between DG and CA3. 
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Abstract. The mammalian hippocampus has often been compared to
neural networks of associative memory [6]. Previous investigation of as-
sociative memory in the brain using associative neural networks have
lacked biological complexity. Using a network of biologically plausible
spiking neurons we examine associative memory function against results
for a simple artificial neural net [5]. We investigate implementations of
methods for improving recall under biologically realistic conditions.

Keywords: Associative memory, mammalian hippocampus, neural net-
works, pattern recall, inhibition.

1 Introduction

Graham and Willshaw [5] examined the performance of pattern recall in an
artificial neural network of associative memory. The net used simple binary units
with 10% partial connectivity. They investigated methods to improve the quality
of pattern recall using variations of the winners-take-all (WTA) approach. The
WTA approach chooses the required number of units with the highest dendritic
sum to fire during pattern recall. Using a model network of biologically realistic
spiking neurons [8], we investigate the application of local inhibitory circuitry
and a modification in the membrane properties of the PCs in an attempt to
improve recall quality and replicate the methods of Graham and Willshaw [5].

2 The Model

The network model of autoassociative memory contains 100 recurrently con-
nected cells (fig. 1a). The model is based on the network of Sommer and Wen-
nekers [8]. It was created and simulated using the Neuron computer simulation
package [1].

Each cell was an identical two-compartment model of a CA3 pyramidal cell,
developed by Pinsky and Rinzel [7]. In each cell the compartments are coupled
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electrotonically by gc, the strength of coupling and p, the percentage of total
area in the soma-like compartment. The soma-like compartment has fast sodium
and potassium currents that can generate action potentials (AP). The dendrite
contains slower calcium and calcium-modulated currents.

Each PC is connected to every other PC (non-reciprocal) with a probability
of 0.1 (10% connectivity). Connections use an AMPA synapse which generates a
fast excitatory post-synaptic potential. Synaptic delay varies from 0.3 to 1 ms,
and peak conductance ranges up to GAMPA = 0.0154µS. Higher conductance
is required at lower levels of connectivity to maintain synaptic drive onto each
cell. The actual connectivity is dependent upon the number of patterns stored,
in combination with the physical connectivity.

A pattern consists of 10 randomly-chosen active neurons out of the population
of 100. Patterns are stored by clipped Hebbian synaptic modification, resulting
in a structured weight matrix. For a given pattern, the Hebbian rule specifies
a weight of 1 for a connection between two neurons that are both active in the
pattern, with all other weights being 0.

The network also contains global inhibition (fig. 1a) which acts as a threshold
control that moderates the activity level in the network and keeps that activity
from unphysiological states where all cells fire at very high rates [8]. It restricts
firing rates to approximately gamma frequencies [2]. In the model, the inhibitory
dynamics are not induced by explicit interneurons. It is assumed that APs of PCs
envoke IPSPs on all cells in the network via inhibitory connections [8]. These in-
hibitory synapses employ a fast GABA-ergic conductance changewith reversalpo-
tentialVCL = -75mV and a fast rise-time and slowdecay.The connectiondelaywas
around 2 ms. The inhibitory peak conductancewas fixed at GGABA = 0.00017µS.

Recall was tested by tonically stimulating 5 from a known pattern of 10 PCs
using current injection to either the soma or dendrite with a strength ranging

Fig. 1. (a) Circuit diagram of the network. PCs have an apical dendrite and soma.
There are recurrent excitatory connections between cells but with no connections onto
the same cell. Network is fully connected in this example. The IN cell represents the
global inhibition mediated by activity from spiking PCs. (b) Normalised WTA with
two PCs: basic global inhibition and a local inhibitory connection.
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between 0.00075 and 0.0075 nA over 1500ms. Successful recall would result in
the remaining 5 PCs in the pattern becoming active, but no other cells.

3 Thresholding Strategies for Recall

Standard winners-take-all (WTA). Pattern recall proceeds by only those PCs
that receive the greatest excitatory input becoming active. In this network of
spiking neurons, the standard WTA method recalls a pattern where the thresh-
old of a PC’s firing is set by the intrinsic threshold of the PC and the global
inhibition. The intrinsic threshold of a PC is largely determined by membrane
resistance and sodium channel density.

Normalised WTA network (localized inhibition). The normalised WTA uses the
fact that all dendritic sums lie between a range 0 and some maximal level of in-
put activity, which equates with the number of physical connections onto a cell
that are active, irrespective of the learnt synaptic weight. This input activity
is the amount of excitation each cell could receive, whereas the dendritic sum
is the amount of excitation the cell actually receives. Graham and Willshaw [5]
found that by normalising a cell’s dendritic sum by its input activity reduces the
error/overlap during recall. Local inhibition, implemented by having inhibitory
connections between PCs corresponding to all possible modified excitatory con-
nections in a partially connected net (fig. 1b), should have a similar outcome.
This inhibition inhibits a PC in proportion to the excitation it could receive and
could be considered as part of a disynaptic inhibitory drive with a fast acting
GABAA type synapse [3].

Amplified WTA method. The average excitation a cell receives during recall
increases with the cell’s unit usage, leading to increasing overlap between the
dendritic sums of high and low cells. Graham and Willshaw [5] found that for
cells with a given unit usage, the variations/overlap due to unit usage can be
reduced by a suitable transformation of the dendritic sum as a function of a
cell’s unit usage. Graham [4] used a method of signal (EPSP) amplification
to help discriminate between low and high cells and therefore improve pattern
recognition. Adding a persistent sodium channel to the soma with a low voltage
activation range and appropriate maximum conductance should amplify high
dendritic sums (summed EPSPs). Testing on a single cell shows a non-linear
increase in dendritic summation above a given threshold.

4 Results

Recall performance was tested by storing 50 patterns in the net. The partial
cue is 5/10 cells of a stored pattern. Physical connectivity was set at 10%. The
dynamics of the network determines that the recall process is synchronous in
which cell activation outwith the input cue is dependent on APs from the cued
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Fig. 2. Recall quality over time in a 10% partially connected network when recalling a
single pattern using (a) standard WTA, (b) normalised WTA and (c) amplified WTA.
Throughout, Id = 0.0075 nA and GGABA(g) = 0.00017 µS. (a) GAMPA = 0.0154 µS;
(b) GAMPA = 0.0154 µS, GGABA(l) = 0.00748 µS; (c) GAMPA = 0.008 µS, GpNa =
0.000165 µS. The horizontal lines are qualitative indicators of the main spread of recall
performance in each case.

cells. The global inhibitory circuit synchronises the network activity to gamma
frequency range.

Quality of recall was measured by examining spiking activity over 1500ms and
calculating a quality measure as:

C =
∑N

i=1(Bi − B̄)(B∗ − αB)(∑N
i=1(Bi − B̄)2

∑N
i=1(B∗ − αB)2

)1/2

where C is the recall quality, B is a recalled output vector, B∗ is the required
output, N is the number of cells, αB is the mean output activity and B̄ is the
mean activity of the recalled pattern. The required output vector is the selected
memory pattern stored in the structured connectivity matrix. The actual output
vector is determined by theAPs from any cell occurringwithin a given sliding time
window of 16 ms. This time was selected on the basis of spiking frequency during
recall, so that at most a single spike from a cell would occur in the window.

With standard WTA the mean pattern recall quality is approximately 61%
(fig. 2a). Using the normalised WTA (fig. 2b) the addition of localised inhibition
improves the mean pattern recall quality to approximately 64%. A significant
improvement can also be measured using the amplified WTA which gives a mean
pattern recall quality over of approximately 65%. The low percentage of recall
quality for each method suggests confusion from inherent noise due to overlap
in patterns during the storage procedure and partial physical connectivity. The
standard WTA approach (fig. 2a) shows an oscillation between high and low
values of recall and a wide variation in the quality of pattern recall over time.
The normalised WTA (fig. 2b) has a faster rate of cell spiking due to the localised
inhibitory circuit. Also, the variation in recall quality is greatly reduced, with a
range of 60% to 80% (excluding some outliers), compared to the standard WTA
at approximately 40% to 80%. Similarly, the amplified WTA approach (fig. 2c)
shows less variation in quality of recall per iteration with a range of 60% to 80%
and fewer outliers. Outliers can be attributed to increased iterations from the
extra inhibition in the normalised WTA method and the increased likelines of an
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AP due to the persistent Na channel in the amplified WTA. The mean quality
over all patterns shows a statistically significant (95% CI) increase when using
the normalised and amplified methods compared to the standard WTA method.

5 Conclusion

Our model demonstrates that methods of improving recall in a network of spiking
neurons show significant correlations to the results found in artificial neural
networks of associative memory [5]. We have shown, as found experimentally
[2], that global inhibition is required for synchronous PC activity in the gamma
frequency range. Our model also suggests that for pattern recall, a method of
local inhibition (GABA-ergic interneurons) may further synchronize the activity
between PCs and also improve the recall of a pattern. Adding a persistent Na
channel to the cell to amplify large EPSPs also improved the quality of pattern
recall. This result suggests that the membrane properties of PCs may be able
to reduce noise in patterns of synaptic input. The added persistent Na channel
confirms the methods explored in [4], where it was found that voltage-gated ion
channels act to boost synaptic input and improve recall in a model of associative
memory.
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